2017年西华师范大学综合数学之概率论与数理统计考研复试核心题库
● 摘要
一、计算题
1. 在区间(0, 1)中随机地取两个数,求事件“两数之和小于7/5”的概率.
【答案】这个概率可用几何方法确定,在区间(0, 1)中随机地取两个数分别记为x 和y , 则y )(x ,的可能取值形成如下单位正方形
其区域为图中的阴影部分
.
其面积为
而事件A“两数之和小于7/5”
可表示为
图
所以由几何方法得
2. 为了比较用来做鞋子后跟的两种材料的质量,选取了15个男子,(他们的生活条件各不相同)每人穿着一双新鞋,其中一只是以材料A 做后跟,另一只以材料B 做后跟,其厚度均为10mm ,过了一个月再测量厚度,得到数据如下:
表
问是否可以认定以材料A 制成的后跟比材料B 的耐穿? (1)设..
来自正态总体,结论是什么?
(2)采用符号秩和检验方法检验,结论是什么?
【答案】(1)这是成对数据的检验问题,在假定正态分布下,以记差值d 的均值,则需检验的假设为
由于
的P 值为
第 2 页,共 31 页
此处15个差值为
故可算出检验统计量值为
于是检验
p 值小于0.05,在显著性水平0.05下可以认定以材料A 制成的后跟比材料B 的耐穿. (2)由于两个负的差值的秩分别为5和6.5,故符号秩和检验统计量为,这是一个单边假设检验,
检验拒绝域为
号在使用中是完全等价的)
下,查表13可知
A 制成的后跟比材料B 的耐穿,二者结果一致。
3. 设有k 台仪器,已知用第i 台仪器测量时,测定值总体的标准差为些仪器独立地对某一物理量各观察一次,分别得到取何值,方能使
【答案】若要使
成为的无偏估计,且方差达到最小?
为的无偏估计,即
则必须有
此时,
因此,问题转化为在令
的条件下,求
由
得到
从①中可以得到
代入②中,解出
从而
4. 掷一颗骰子100次, 记第i 次掷出的点数为求概率
利用林德伯格-莱维中心极限定理, 可得
这表明:掷100次骰子点数之平均在3到4之间的概率近似为0.9966, 很接近于1.
第 3 页,共 31 页
(正号和负
在给定
观测值落入拒绝域,拒绝原假设,可以认定以材料
(i=l,2, …,k ). 用这
应
,设仪器都没有系统误差. 问
的极小值.
点数之平均为试
【答案】由题意可得
5. 用一个仪表测量某一物理量9次,得样本均值
(2)求该物理量真值的置信水平为0.99的置信区间. 【答案】(1)此处
,的
置信区间为
查表知
,样本标准差s=0.22.
(1)测量标准差大小反映了测量仪表的精度,试求的置信水平为0.95的置信区间;
从而的置信水平为0.95的置信区间[0.1487,0.4215] (2)当未知时,的查表得
置信区间为
,因而的置信水平为0.99的置信区间为
6. 设随机变量X 和Y 同分布,X 的密度函数为
已知事件
独立,且
求常数a.
,从而
【答案】由同分布可得P (A )=P(B )
由此解得P (A )=0.5,进而由
解得
7. 掷一颗骰子60次,结果如:
表
试在显著性水平为0.05下检验这颗骰子是否均匀.
【答案】这是一个分布拟合优度检验,总体总共分6类. 若记出现点数i 的概率为的假设为知,
检验的统计量为
由于
未落入拒绝域,故不拒绝原假设. 在显著性水平为0.05下可以认为这颗骰子是均
第 4 页,共 31 页
则要检验
则查表
这里k=6,
检验拒绝域为若取