当前位置:问答库>考研试题

2017年华东交通大学经济管理学院432统计学[专业硕士]之统计学原理考研导师圈点必考题汇编

  摘要

一、简答题

1. 请给出你所知道的概率抽样的组织方式。

【答案】概率抽样也称随机抽样,是指遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。调查的实践中经常采用的概率抽样方式有以下几种:

(1)简单随机抽样。简单随机抽样指从包括总体N 个单位的抽样框中随机地、一个一个地抽取n 个单位作为样本,每个单位入样的概率是相等的;

(2)分层抽样。分层抽样是指将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、 随机地抽取样本,将各层的样本结合起来,对总体的目标量进行估计;

(3)整群抽样。整群抽样是指首先将总体中若干个单位合并为组,这样的组称为群,抽样时直接抽取群,然后对中选群中的所有单位全部实施调查;

(4)系统抽样。系统抽样是指将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其他样本单位;

(5)多阶段抽样。采用类似整群抽样的方法,首先抽取群,但并不是调查群内的所有单位,而是再进一步抽样,从选中的群中抽取出若干个单位进行调查;因为取得这些接受调查的单位需要两个步骤,所以将这种抽样方式称为二阶段抽样;这里,群是初级抽样单位,第二阶段抽取的是最终抽样单位。将这种方法推广,使抽样的段数增多,就称为多阶段抽样。

2. 如果有百分之五的人是左撇子,而小明和他弟弟都是左撇子;那么小明和他弟弟都是左撇子这个事件的 概率是不是0. 05X0. 05=0. 00257?为什么?

【答案】不是。

显然,小明和他弟弟都是左撇子的事件不是独立的,所以这种计算方法错误。

当两个事件相互独立时,

当两个事件不相互独立时

,⑴ ⑵

记事件A 为小明是左撇子,事件B 为小明的弟弟是左撇子。显然小明是左撇子和他弟弟是左

撇子这两个事件不相互独立,所以选择第二个公式计算小明和他弟弟都是左撇子这个事件的概率。

3. 考虑总体参数的估计量,简述无偏估计量与最小方差无偏估计量的定义。

【答案】①无偏性(unbiasedness )是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为所选择的估计量为如果则称为的无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来 衡量。对此,一个自然而基本的衡量标准是要求估

计量无系统偏差。尽管在一次抽样中得到的估计值不一定恰好 等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,即希望估计量 的均值应等于未知参数的真值,这就是无偏性的要求。 ②最小方差无偏估计是在无偏估计类中使均方误差达到最小的估计量,即在均方误差

是的一个无偏估计量,都有

则称是的一致最小方差无偏估计。

4. 什么是集中趋势和离散趋势?它们常用的指标有哪些?

【答案】集中趋势是指一组数据向某一中心值靠拢的程度,它反映了一组数据中心点的位置所在。常用的反映集中趋势的指标有平均数、中位数和众数。

数据的离散趋势是数据分布的另一个重要特征,它反映的是各变量值远离其中心值的程度。数据的离散程度越大,集中趋势的测度值对该组数据的代表性就越差;离散程度越小,其代表性就越好。描述数据离散程度采用 的测度值,根据所依据数据类型的不同主要有异众比率、四分位差、方差和标准差。此外,还有极差、平均差以 及测度相对离散程度的离散系数等。

5. 回归分析结果的评价。

【答案】对回归分析结果的评价可以从以下四个方面入手:

(1)所估计的回归系数的符号是否与理论或事先预期相一致;

(2)如果理论上认为

归方程也应该如此;

(3)用判定系数来回答回归模型在多大程度上解释了因变量取值的差异;

(4)考察关于误差项的正态性假定是否成立。因为在对线性关系进行检验和对回归系数进行?检验时,

都要求误差项服从正态分布,否则,所用的检验程序将是无效的。检验正态性的

简单方法是画出残差的直方图或正态概率图。

6. 给出在一元线性回归中:

(1)相关系数的定义和直观意义;

(2)判定系数的定义和直观意义;

(3)相关系数和判定系数的关系。

【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若相关系数是根据总体全部数据计算的,称为总体相关系数,记为

称为样本相关系数,记为r 。样本

相关系数的计算公式为: 若是根据样本数据计算的,则之间的关系不仅是正的,而且是统计上显著的,那么所建立的回最小意义下的最优估计,它是在应用中人们希望寻求的一种估计量。设若对于的任一方差存在的无偏估计量

按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。

(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:

判定系数测度了回归直线对观测数据的拟合程度。

的取值范围是越接近于1, 表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来答释y 值变

差的部分就越多,回归直线的拟合程度就越好;反之,越接近于0, 回归直线的拟合程度就越差。

(3)相关系数和判定系数都是用来表明X 与Y 的关系,即X 对Y 的拟合程度。在一元线性回归中,相关系数实际上是判定系数的平方根。相关系数取值范围在卜之间。判定系数取值范围在[0, 1]之间。

7. 简述时间序列的组成要素。

【答案】时间序列的组成要素分为4种,即趋势或长期趋势、季节性或季节变动、周期性或循环波动、随机性或不规则波动。

(1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势;

(2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动;

(3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;

(4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。

8. 下面两个统计图分别是对某数据集中y 关于x 的线性回归分析后的残差(Residuad )请指出这个回归分析所存在的问题,并提出解诀方案。