当前位置:问答库>考研试题

2018年西安财经学院统计学院432统计学[专业硕士]考研核心题库

  摘要

一、简答题

1. 简述均值、众数和中位数三者之间的关系及其在实际中的应用。

【答案】(1)众数、中位数和平均数的关系

从分布的角度看,众数始终是一组数据分布的最高峰值,中位数是处于一组数据中间位置上的值,而平均数 则是全部数据的算术平均。

对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下关系:

①如果数据的分布是对称的,众数中位数和平均数必定相等,即

②如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方靠,而众数和中位数由于是位 置代表值,不受极值的影响,因此三者之间的关系表现为:

③如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方靠,

(2)众数、中位数和平均数在实际中的应用

①众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,当数据量较少时,不宜使用众数。 众数主要适合作为分类数据的集中趋势测度值。

②中位数是一组数据中间位置上的代表值,不受数据极端值的影响。中位数主要适合作为顺序数据的集中趋势测度值。

③平均数是对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等,这时则应选择平均数作为集中趋势的代表值。 但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是当偏斜程度较大时,可以考虑选择众数或中位数。

2. 简述估计量的无偏性,有效性和一致性。

【答案】(1)无偏性 若估计量的数学期望等于未知参数

则称为的无偏估计量。估计量的值不一定就是的真值,因为它是 一个随机变量,若

是的无偏估计量,则尽管的值随样本的不同而变化,但平均来说它会等于的真值。

第 2 页,共 53 页 即:

(2)有效性

设(3)—致性(相合性) 如果依概率收敛于则称

即有

是的一致估计量。

3. 简述假设检验的过程。

【答案】假设检验的过程如下:

(1)根据所研宄问题的要求提出原假设(或称为零假设、无效假设)和备择假设确定显著性水平。显著性水平为拒绝假设检验是犯第一类错误的概率。

(2)选择合适的检验方法,确定适当的检验统计量,确定统计量的分布,并由假设计算其数值。

(3)根据统计量确定值,做出统计推断。根据计算的统计量,查阅相应的统计表,确定值,以值与显著性水平比较,若则拒绝

4. 什么叫变异、变量和变量值,试举例说明。

女;年龄标志表现为20岁、30岁等。

变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:

(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;

“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、

“次品”等;

(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……

5. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。

(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。

(2)请说明如何对这100例身高数据进行描述性统计分析。

【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。

第 3 页,共 53 页 与且至少对于某一个都是的无偏估计量,若对于任意

上式中的不等号成立,则称较有效。 有接受

若则不拒绝 【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、

样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。

参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。

统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。

(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。

6. 简述标准化值的意义及计算公式。

【答案】变量值与其平均数的离差除以标准差后的值称为标准分数,也称标准化值或分数。其计算公式为:

标准差。

标准分数可以测量每个数据在该组数据中的相对位置,并可以用它来判断一组数据是否有离群数据。比如, 如果某个数值的标准分数为就知道该数值低于平均数1.5倍的标准差。在对多个具有不同量纲的变量进行处理时,常常需要对各变量进行标准化处理。实际上,z 分数只是将原始数据进行了线性变换,它并没有改变一个数据在该组数据中的位置,也没有改变该组数据分布的形状,而只是将该组数据变为平均数为0, 标准差为1。

7. 简述概率抽样与非概率抽样的区别。

【答案】(1)概率抽样也称随机抽样,是指遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。

非概率抽样是相对于概率抽样而言的,指抽取样本时不是依据随机原则,而是根据研宄目的对数据的要求, 采用某种方式从总体中抽出部分单位对其实施调查。

(2)概率抽样与非概率抽样的区别:概率抽样是依据随机原则抽选样本,这时样本统计量的理论分布是存 在的,因此可以根据调查的结果对总体的有关参数进行估计,计算估计误差,得到总体参数的置信区间,并且在 进行抽样设计时,对估计的精度提出要求,计算为满足特定精度要求所要的样本量。而非概率抽样不是依据随机 原则抽选样本,样本统计量的分布是不确切的,因而无法使用样本的结果对总体相应的参数进行推断。

第 4 页,共 53 页 式中为变量的标准化值,是该组数据均值,s 为该组数据的