当前位置:问答库>考研试题

2018年西北农林科技大学农学院314数学(农)之工程数学—线性代数考研核心题库

  摘要

一、解答题

1.

已知矩阵可逆矩阵P ,使

若不相似则说明理由。

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是当

时,由秩

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

A 可以相似对角化,因此矩阵A 和B 不相似。 2. 已知A 是3阶矩阵,是3维非零列向量,若

(Ⅰ)证明

:(Ⅱ

)设

【答案】

(Ⅰ)由同特征值的特征向量,

又令即由

线性无关,得齐次线性方程组

因为系数行列式为范德蒙行列式且其值不为0,

所以必有

第 2 页,共 40 页

线性无关; 求

线性无关.

非零可知,

是A 的个

线性无关;

(Ⅱ)因为

,

所以

3. 已知实二次

的矩阵A ,满

且其

(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ

)求出二次型【答案】(Ⅰ)

由由

知,B

的每一列

满足

的具体表达式.

知矩阵A

有特征值即

是属于A 的特征值

.

与—

j 正交,于是有

的线性无关特征向

显然B 的第1, 2列线性无关

,量,从而知A

有二重特征值

对应的特征向量为

解得

正交化得:

再将正交向量组

单位化得正交单位向量组:

第 3 页,共 40 页

(Ⅱ

)由于

则由正交变换

化二次型为标准形

故二次型

4. 设n 维列向

【答案】

线性无关,其中S 是大于2的偶数. 若矩

试求非齐次线性方程组

的通解.

方程组①化为:

线性无关,得

整理得

,由

显然①与②同解.

下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)

从而组的基础解系为

有无穷多解.

易知特解为

从而②的通解,

即①的通解为

第 4 页,共 40 页

对应齐次方程

A 为任意常