2017年合肥工业大学管理学院846运筹与管理之运筹学考研题库
● 摘要
一、选择题
1. 设线性规划
A. 基本可行解 B. 基本可行最优解 C. 最优解 D. 基本解 【答案】A
【解析】可行解包括基可行解与非基可行解。
2. 若是否采用j 项目的0--1变量为x ,那么j 个项目中至多只能选择一个项目的约束方程为( )。
D. 无法表示 【答案】C
【解析】A 表示的是至少选择一个项目,不符合; B 表示的是只能选择一个项目。
3. 关于最小费用最大流,求解时不会用到下面哪种方法( )。
A.Dijkstra 算法 B.Floyd 算法
C.Ford 一Fulkerson 算法 D. 奇偶点作业法 【答案】D
【解析】奇偶点作业法为中国邮递员问题中寻找欧拉圈时所用的方法,最小费用最大流问题并不涉及此法。
4. 影子价格实际上是与原问题的各约束条件相联系的( )的数量表现。
A. 决策变量
第 2 页,共 60 页
有可行解,则此线性规划一定有( )。
B. 松弛变量 C. 人工变量 D. 对偶变量 【答案】D
【解析】影子价格是对偶问题的经济解释,实际上影子价格的大小即为对偶变量的大小。
二、判断题
5. 己知yi 为线性规划的对偶问题的最优解,若yi=0,说明在最优生产计划中第i 种资源一定还有剩余。( )
【答案】×
【解析】在生产过程中,如果某种资源乓未得到充分利用时,该种资源的影子价格为零。但是影子价格为零 并不单表该种资源一定有剩余。
6. 如果线性规划问题有最优解,则它对偶问题也一定有最优解。( )
【答案】√
【解析】由对偶定理知,原命题为真,且线性规划问题与它的对偶问题的最优值相等。
7. 目标规划问题的日标函数都是求最大化问题的。( )
【答案】×
【解析】当每一目标值确定后,决策者的要求是尽可能缩小偏离目标值,因此目标规划的目标函数只能是最小化的。
8. 运输问题是一种特殊的线性规划模型,因而其求解结果也可能出现四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。( )
【答案】×
【解析】运输问题是一种特殊的线性规划模型,它总存在可行解,或是存在惟一最优解,或是有无穷最优解。
9. 线性规划问题的每一个基解对应可行域的一个顶点。( )
【答案】×
【解析】基解不一定是可行解,基可行解对应着可行域的顶点。
三、证明题
10.证明:矩阵对策G={S1,S 2; A}在混合策略意义下有解的充要条件是:存在
为函数以
的一个鞍点,即对一切
【答案】(l )先证明充分性
第 3 页,共 60 页
,
使
,有
对任意X , Y 均有,故得出
又所以,
另一方便,对任何X ,Y 有
②
由不等式①、②
,
(2)再证必要性。设有X*,Y*,使得
① ,所以得
则由
,有
所以对任意X ,Y ,有
综上得证。 11.设
是正定二次函数
。试证:若
关于Q 共扼
分别
在两条平行
于方向P 的直线上的极小点,则方向p 与方向
【答案】因为则有从而又由于则有
分别是f (x )在两条平行于方向P 的直线上的极小点, ,
12.称顾客为等待所费时间与服务时间之比为顾客损失率,用R 表示。
(l )试证:对于M/M/1模型,(2)在上题中,设
不变而
。
是可控制的,试定
使顾客损失率小于4。
证毕。
【答案】(l )对于M/M/1模型, 。由定义,有
第 4 页,共 60 页
相关内容
相关标签