当前位置:问答库>考研试题

2017年哈尔滨工业大学深圳研究生院850运筹学考研导师圈点必考题汇编

  摘要

一、选择题

1. 在求解整数规划问题时,不可能出现的是( )。

A. 唯一最优解

B. 无可行解

C. 多重最优解

D. 无穷多最优解

【答案】D

【解析】整数规划的可行解的个数是有限的,所以整数规划中不可能出现无穷多最优解。

2. 用线性规划制定某一企业的生产计划问题,两种资源的影子价格分别为y 甲=5,y 乙=8,说明这两种资源在该企业中的稀缺程度为:( )。

A. 甲比乙更稀缺

B. 甲和乙同样稀缺

C. 乙比甲更稀缺

D. 甲和乙都不稀缺

【答案】C

【解析】影子价格是对系统内部资源稀缺程度的一种客观评价,某种资源的影子价格越高,说明该资源在系统内越稀缺,增加该资源的供应量对系统目标函数值的贡献也越大。

3. 关于最小费用最大流,求解时不会用到下面哪种方法( )。

A.Dijkstra 算法

B.Floyd 算法

C.Ford 一Fulkerson 算法

D. 奇偶点作业法

【答案】D

【解析】奇偶点作业法为中国邮递员问题中寻找欧拉圈时所用的方法,最小费用最大流问题并不涉及此法。

4. 己知Y i 为线性规划的对偶问题的最优解,若Y i >0,说明( )。

A. 原问题的最优解x i =0

B. 在最优生产计划中第i 种资源己完全耗尽

C. 在最优生产计划中第i 种资源有剩余

D. 无法判断

【答案】B

【解析】当影子价格为0时,表示某种资源未得到充分利用; 而当资源的影子价格不为零时,表明该种资源在生产中己耗费完毕。

二、简答题

5. 简述对偶问题的“互补松弛性”。

【答案】互补松弛性:若

分别是原问题和对偶问题的可行解。那么,当且仅当为最优解。

6. 说明本书所述货运车辆优化调度算法的原理和求解步骤,并绘出求解过程框图。请简要回答以下问题。

(1)若有两种车型的车可用,书中提出的模型应怎样修改? 在书中所提算法的启发下,试拟定出一套求解的迭代步骤。

(2)你认为应如何将书中提出的模型和算法推广到多目标的情形。

【答案】①货运车辆优化调度算法的原理:最小费用最大流原理。求解步骤为:a. 仅考虑重载点,运用表上作业法求出最优解作为原问题的可行解; b. 进行解的扩展和解的收缩,直至得到可接受的可行解; c. 以该可接受的可行解为依据确定初始行车线路; d. 根据具体约束条件进行调整,直至得到最优行车路线。求解过程框图如图所示。

(2)修改后的迭代算法即神经网络(neural networks)算法。

①建立结合矩阵:将车辆经过的点包括源点看成神经网络的结点,即神经元,令神经元数目为Ni 神经元 和j 神经元的结合权值为,j 神经元的输出为r j 。

②将车辆调度的各种约束条件转化为约束能量函数为E 约。

,且r i (t )只能取0或1,令神经元i 的阈③神经网络计算:令时刻t 神经元i 的输出为r i (t )

值为Q i ,则输出能量

,其中,因此总的能量函数

为,则该网络相对处于稳定状态。由于如果,且E 有界,系统必

趋向一个比较好的稳定状态,再把此稳定状态时r i (t ) 形成换位阵中元素为l 的结点连接起来,形成所求的最满意车辆调度线路。

④根据所形成的最满意线路来选择车辆调度方案。

(3)推广到多目标情形:车辆优化的目标函数可以有很多个,如总运费最小,司机总的驾驶时间最短,车 辆满载行驶的时间最长等; 而约束条件,如路径的最大输入输出流、车载量、发车和收车约束等。也可以加入惩 罚算子将约束条件转化为惩罚函数,利用多目标方法进行求解。