当前位置:问答库>考研试题

2018年西北师范大学物理与电子工程学院621高等数学(含线性代数)之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1. 设A

的解为【答案】

利用反证法,

假设以有

解矛盾,故假设不成立,

.

2.

为三维单位列向量,并且

证明:

(Ⅰ)齐次线性方程组Ax=0有非零解; (Ⅱ)A

相似于矩阵

故Ax=0有非零解.

(Ⅱ)由(Ⅰ

)知向量.

又且

另外,由

故可知

为A 的特征值

,为4的2重特征值

为对应的特征向量.

为A 的3个

为4的单重特征值.

故A

有零特征值

的非零解即为

对应的特征

有惟一解知

则方程组

. 即

可逆.

矩阵

有唯一解. 证明:

矩阵为A 的转置矩阵).

易知

于是方程组

只有零解.

使

.

只有零

有非零解,这与

有非零解,即存在

为可逆矩阵,

且方程组

【答案】(Ⅰ)由于A 为3阶方阵,且

为两个正交的非零向量,从而线性无关.

线性无关的特征向量,

即A

相似于矩阵

3.

设的所有矩阵.

E 为三阶单位矩阵,求方程组Ax=0的一个基础解系;求满足AB=E

【答案】(1)对系数矩阵A 进行初等行变换如下:

得到方程组Ax=0

同解方程组得Ax=0

的一个基础解系为

(2)显然B 矩阵是一个4×3矩阵,设对矩阵(AE )进行初等行变换如

下:

由方程组可得矩阵B 对应的三列分别为

即满足AB=£;

的所有矩阵为

其中为任意常数.

4. 已知实二次

的矩阵A ,满

(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形;

(Ⅱ

)求出二次型【答案】(Ⅰ)

由由

知,B

的每一列

的具体表达式.

知矩阵A

有特征值

满足

是属于A 的特征值

.

与—

j 正交,于是有

的线性无关特征向

显然B 的第1, 2列线性无关

,量,从而知A

有二重特征值

对应的特征向量为

解得

正交化得:

再将正交向量组

单位化得正交单位向量组:

(Ⅱ

)由于

则由正交变换

化二次型为标准形

故二次型