2018年大连海洋大学食品科学与工程715高等数学Ⅱ之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1.
设矩阵.
【答案】
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
于是A 的3
个特征值为(Ⅰ)当
且
时,A 有3个不同特征值,故4可对角化,且可对角化为
(Ⅱ)当a=0时
,
此时A 有二重特征值1,
仅对
应1个线性无关的特征向量,故此时A 不可对角化.
(Ⅲ)
当
时
,
此时
A
有二重特征
值
而
仅对应1个线性无关的特征向量,故此时A 不可对角化.
2.
已知
对角矩阵.
是矩阵的二重特征值,求a 的值,并求正交矩阵Q
使为
【答案】A 是实对称矩阵
,
可得a=2.
此时
是二重根,
故
于是
必有两个线性无关的特征向量,
于是
知
解(2E-A )x=0,
得特征向量将
正交化:
解(8E-A )x=0,
得特征向量先
再将单位化,得正交矩阵:
且有
3. 设B
是
(I
)证明(II
)证明(III
)若【答案】⑴
矩阵
逆其中E 是n 阶单位矩阵.
且A 可对角化,
求行列式
(II )
(Ⅲ)设
则由
知
即
或1. 又存在可逆矩阵p ,
使或1.
4.
已知通解是
.
, 证明
【答案】
由解的结构知
是4阶矩阵,其中
是齐次方程组
故秩
是4维列向量. 若齐次方程组Ax=0的的基础解系.
又由
得
因
与
可知综上可知
,
有
即故
都是
的解.
由
线性无关.
由
是
得的基础解系.
那么
二、计算题
5. 求下列向量组的秩,并求一个最大无关组:
(1
)
(2
)
【答案】(1
)对作初等行变换,求它的行阶梯形: