2016年浙江工业大学经贸管理学院836运筹学考研冲刺模拟题及答案
● 摘要
一、选择题
1. 单纯形法求解最大化线性规划问题,如果存在“左端≥右端常数”的约束条件,对此约束条件应引入( )。
A. 可控变量
B. 环境变量
C. 人工变量
D. 松弛变量
【答案】D
【解析】约束方程为“≥”不等式,则可在“≥”不等式左端减去一个非负剩余变量(也可称松弛变量)。
2. 若f 是G 的一个流,K 为G 的一个割,且f 的流量等于K 的容量,则K 一定是( )。
A. 最大流
B. 最大割
C. 最小流
D. 最小割
【答案】D
【解析】网络从发点到收点的各通路中,由容量决定其通过能力,最小割集则是这些路中的咽喉部分,或者叫瓶口, 其容量最小,它决定了整个网络的最大通过能力。
3. 无约束最优化问题
)问题的( )。
A. 全局最优解
B. 局部最优解
C. 极点
D .K-T点
【答案】B
【解析】局部最优解即在X*的某邻域,满足
中,如果在X*的某个领域内满足,则X ’是,则称X*是函数的局部最优解。
4. 用单纯形法求解线性规划问题时,满足( )对应的非基变量xj 可以被选作为换入变量。
A. 检验数σ>0
B. 检验数σ<0
C. 检验数σ>0中的最大者
D. 检验数σ<0中的最小者
【答案】C
【解析】当某些σ>0时,xj 增加则目标函数值还可以增大,这时要将某个非基变量xj 换到基变量中去,为了使目标函数值增加得快,一般选择σ>0中的大者。
5. 用匈牙利法求解指派问题时,不可以进行的操作是( )。
A. 效益矩阵的每行同时乘以一个常数
B. 效益矩阵的每行同时加上一个常数
C. 效益矩阵的每行同时减去一个常数
D. 效益矩阵乘以一个常数
【答案】D
【解析】效益矩阵乘以一个常数相当于系数矩阵的某行或某列乘以一个常数,这相当于目标函数中的部分系 数乘以一个常数,而目标函数整体乘以一个系数,显然会影响求解结果。
6. 运输问题中,m+n-l个变量构成基本可解的充要条件是它不含( )。
A. 松弛变量
B. 多余变量
C. 闭回路
D. 圈
【答案】C
【解析】位于闭回路上的一组变量,它们对应的运输问题约束条件的系数列向量线性相关,因而在运输问题基可行解的迭代过程中,不允许出现全部顶点由填有数字的格构成的闭回路。也就是说,在确定运输问题的基可行解时,除要求基变量的个数为(m+n-l)外,还要求运输表中填有数字的格不构成闭回路。
二、计算题
7. 考虑如下计划网络图:剪杆上第一个表示工序,第二个表示该工序的正常完成时间。
图
每一工序的正常时间,最短时间及其费用如表所示:
表
(l )计算在正常时间各节点和各工序作业的最早、最迟时间、各工序总时差、关键工序和关键路线。
(2)求各工序每缩短一天的费用率;
(3)设每天的间接费用为90元,试决定使总费用最小的最优工期。
【答案】(1)
表
关键工序是A ,C ,关键路线是1→2→5,工期是18天。
(2)
表
相关内容
相关标签