当前位置:问答库>考研试题

2018年北京工业大学应用数理学院861量子力学考研基础五套测试题

  摘要

一、简答题

1. 简述波函数和它所描写的粒子之间的关系。

【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数则在

用算符的本征函数

展开

态中测量粒子的力学量^

得到结果为

的几率是

得到结果在

范围内的几率

2. 写出泡利矩阵。 【答案】

3. 什么是塞曼效应?什么是斯达克效应?

【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。

4. 解释量子力学中的“简并”和“简并度”。

【答案】一个能级对应多个相互独立的能量本征函数的现象称为“简并”;一个能级对应的本征函数的数目称为“简并度”。

5. 放射性指的是束缚在某些原子核中的更小粒子有一定的概率逃逸出来,你认为这与什么量子效应有关?

【答案】与量子隧穿效应有关。

6. 自发辐射和受激辐射的区别是什么?

【答案】自发辐射是原子处于激发能级时,可能自发地跃迁到较低能级去,并发射出光子的过程;

受激辐射是处于激发能级低能级的。

的原子被一个频率为

的光子照射,受激发而跃迀到较

同时发射出一个同频率的受激光子的过程。受激辐射的光子是相干的,自发辐射是随机

7. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?

【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.

8. 如果一组算符有共同的本征函数,且这些共同的本征函数组成完全系,问这组算符中的任何一个是否和其余的算符对易? 【答案】不妨设这组算符为

.

则对任意波函数

完全系为有:

可见,这组算符中的任何一个均和其余的算符对易。

9. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。 【答案】不同意。因为

10.现有三种能级【答案】一维谐振子.

为实函数,但

可以为复函数。

依题意

请分别指出他们对应的是哪些系统。

对应一维无限深势阱;

对应

对应中心库仑势系统,例如氢原子;

二、证明题

11.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

(2)证:因为而(3)因为

所以

即正交

具有周期性,

所以

即本征值为实

【答案】(1)证:对于厄米算符

所以

设本征方程为

其中为本征值,上式可改写为

易解出即为厄米算符。

C 为积分常数,可由归一化条

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

12.(1)设(2)试将【答案】(1)

与pauli 算符对易,证明

表示成

的线性叠加. 其中为单位算符.

利用

化简可得:

(2)

即角动量z 分量的本征值为

是量子化的,相应本征函

再利用归一化条件可得

三、计算题

13.设基态氢原子处于弱电场中,微扰哈密顿量为(1)求很长时间后已知,基态

电子跃迁到激发态的概率.

其中

T 为常数。

已知,a 基态其中为玻耳半径.