2018年北京市培养单位高能物理研究所806普通物理(乙)考研核心题库
● 摘要
一、计算题
1. 图示两个弹簧系统,劲度系数为
分别求出两种情形的振动频率。
图
【答案】
如图
的固定伸长量为
有取坐标
是弹簧的自然端点
的运动微分方程为
上式还可写为
亦即
因而两弹簧并联时系统的角频率为
如图(b )所示,
两弹簧
为
和
的形变量为
则有
串联后可等效为劲度系数的弹簧,
设
亦即
因而
据此可确定图(b )所示系统的角频率为
第 2 页,共 56 页
是重力与弹性力平衡时弹簧的端点,弹簧
设物体
位移为
其受力为
的形变量分别
2. 一块厚0.025mm 的方解石晶片,
其光轴与晶面平行,放置在两正交偏振片之间。从第一偏振
片出来的线偏振光垂直入射到晶片上,振动方向与晶片的光轴方向夹角为
45°
。
(1
)透过第二个偏振片的光在可见光谱(假定方解石的双折射率【答案】(
1)用
代入得
用
可看作常数。
所以
代入得
因此
k 只能取
7, 8, 9, 10四个整数,代入上式可得所缺波长为
(2)因为
所以
用所缺波长为
代入得
用
代入得
因此k 只能取6, 7, 8, 9, 10, 代入上式得)中缺少哪些波长?
(2)若两偏振片的偏振化方向互相平行,则透射光中缺少哪些波长?
3. —
个
的质点按下述方程作谐振动
式中的单位分别为试问:
(1)为什么值时,势能等于总能量的一半? (2)质点从平衡位置到这一位置需要多长时间? 【答案】(1)势能为总机械能一半的条件是
即
第 3 页,共 56 页
因此当则
时,势能等于总能量的一半。
处需用的最小时间,这要求
设在平衡位置的时刻为
(2)
先求从平衡位置到
设到达
的时刻为
这时振子将继续沿
的方向运动,于是有
由平衡位置到达
处所需最小时间为
从平衡位置沿
轴负向到达
处所需的最小时间也是
4. 一个半径为a 的小线圈,起初和一个半径为b (b>>a)的大线圈共面并同心,如图所示。大线圈通入一恒定电流略去不计)。求:
(1)小线圈中的感应电流。
(2)两线圈间的互感及大线圈中产生的感应电动势
并保持不动,而小线圈以角速度绕其直径转动(小线圈电阻为R , 电感L
图
【答案】(1)因为
所以
(2)依题意得
第 4 页,共 56 页