2018年华南农业大学生命科学学院314数学(农)之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1.
已知
与
相似. 试求a , b , c 及可逆矩阵P ,使
【答案】由
于故B 的特征值
为
从而B
可以对角化为
分别求令
所对应的特征向量,
得
有
即a=5.
由
得A ,B 有相同特征值
,
故
再由得b=-2, c=2,于是
分别求A 的对应于特征值1,2, -1的特征向量得
:令
记
有
.
因此
即
专注考研专业课13年,提供海量考研优质文档!
则P
可逆,且
2. 设
(1
)计算行列式∣A ∣
;
(
2)当实数
a 为何值时
,线性方程组【答案】
有无穷多解?并求其通解.
若要使得原线性方程组有无穷多解,则有及得
此时,原线性方程组增广矩阵为
进一步化为行最简形得
可知导出组的基础解系为非齐次方程的特解为故其通解为k 为任意常
专注考研专业课13年,提供海量考研优质文档!
数.
3.
设三维列向量组
(Ⅱ)
当
线性无关,
列向量组线性无关.
和向量组
线性表示;
(Ⅰ
)证明存在非零列向量
使得
可同时由向量组
时,
求出所有非零列向量
构成的向量组一定线性相关,故存在一组不即,
线性无关,故
不全为0
,
则
线性表示.
所有非零解,即可得所有非零
的系数矩阵A 施行初等行变换化为行最简形:
即存在非零列向量
不全为0.
使得
可同时由向量组
【答案】(Ⅰ)由于4
个三维列向量全为0
的数
又向量组记
和向量组向量
使得
线性无关;
向量组
(Ⅱ)易知,
求出齐次线性方程组下面将方程组
于是,方程组的基础解系可选为
_意非零常数.
因此,
所有非零列向量
4. 设A
为
的解为【答案】
由
利用反证法,
假设以有
解矛盾,故假设不成立,
则
由
.
得
有
有惟一解知
则方程组
. 即
即
可逆.
矩阵
且
有唯一解. 证明:
矩阵为A 的转置矩阵).
易知
于是方程组
只有零解.
使
.
所
只有零
有非零解,这与
有非零解,即存在
为可逆矩阵,
且方程组
所有非零解
_
t 为任
二、计算题