2018年石河子大学食品学院314数学(农)之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1.
设
(1)计算行列式∣A ∣;
(2)当实数a 为何值时,
线性方程组【答案】
有无穷多解?并求其通解.
若要使得原线性方程组有无穷多解,
则有及得
此时,
原线性方程组增广矩阵为
进一步化为行最简形得
可知导出组的基础解系为
非齐次方程的特解为
故其通解为k 为任意常
数.
2. 设二次
型
(Ⅰ)用正交变换化二次型(Ⅱ
)求【答案】
(Ⅰ)由
矩阵A 满足AB=0, 其
中
为标准形,并写出所用正交变换;
知,矩阵B 的列向量是齐次方程组Ax=0的解向量.
记
值(至少是二重)
,
根据
值是0, 0, 6.
设
有
对
正交化,
令的特征向量为
有
则是
的线性无关的特征向量.
由此可知
,是矩阵A 的特征
故知矩阵A
有特征值因此,矩阵A 的特征
那么由实对称矩阵不同特征值的特征向量相互正交,
则
解出
再对,单位化,得
那么经坐标变换
即
二次型化为标准形(Ⅱ)因为
又
有
所以由
进而
得
于是
3. 求个齐次线件JTP
技使它的场础解系由下列向量成.
【答案】由题意,
设所求的方程组为
由这两个方程组知,
所设的方程组的系数都能满足方程组的基础解系为
4.
已知矩阵可逆矩阵P ,使
和
若不相似则说明理由。
故所求的方程组可取为
将
代入得,
构
解得此方程组
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是当
时,由秩
知
有2个线性无关的解,即
时矩阵A 有2个线性无关的特征向量,矩阵
A 可以相似对角化,因此矩阵A 和B 不相似。
二、计算题
5.
设
【答案】
是一组n 维向量,已知n
维单位坐标向量线性无关.
可由
线性无关
6.
设
证明
是非齐次线性方程组Ax=b的S 个解
,
也是它的解.
能由它们线性表示,
证明
线性表示
为实数,满足