当前位置:问答库>考研试题

2018年石河子大学食品学院314数学(农)之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1. 设二次

(Ⅰ)用正交变换化二次型(Ⅱ

)求【答案】

(Ⅰ)由

知,矩阵B 的列向量是齐次方程组Ax=0的解向量.

为标准形,并写出所用正交变换;

矩阵A 满足AB=0, 其

值(至少是二重)

根据

值是0, 0, 6.

正交化,

令的特征向量为

则是

的线性无关的特征向量.

由此可知

,是矩阵A 的特征

故知矩阵A

有特征值因此,矩阵A 的特征

那么由实对称矩阵不同特征值的特征向量相互正交,

解出

再对,单位化,得

那么经坐标变换

二次型化为标准形(Ⅱ)因为

所以由

进而

于是

2. 求个齐次线件JTP

技使它的场础解系由下列向量成.

【答案】由题意,

设所求的方程组为

由这两个方程组知,

所设的方程组的系数都能满足方程组的基础解系为

3.

已知矩阵

可逆矩阵P ,使

若不相似则说明理由.

故所求的方程组可取为

代入得,

解得此方程组

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是

由矩阵B 的特征多项式

得到矩阵B

的特征值也是

时,由秩

A 可以相似对角化.

有2个线性无关的解,

时矩阵A 有2个线性无关的特征向量,矩阵

时矩阵B 只有1个线性无

只有1个线性无关的解,即

关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.

4. 已知A 是3阶矩阵,

(Ⅰ)证明

:(Ⅱ

)设

【答案】

(Ⅰ)由同特征值的特征向量,

又令即由

是3维非零列向量,若线性无关;

线性无关.

非零可知,是A 的个

线性无关,得齐次线性方程组

因为系数行列式为范德蒙行列式且其值不为0,

所以必有

线性无关;

(Ⅱ)因为

,

所以

二、计算题

5. 说明:xOy

平面上变换

(1

)(2

)(3

)(4

的几何意义,其中