2017年湘潭大学553运筹学复试实战预测五套卷
● 摘要
一、简答题
1. 什么是可行流?
【答案】满足下列条件的网络流f 称为可行流 (l )容量限制条件:对每一弧(v i ,v j )对于起点Vs ,记对于终点V t ,记
(2)平衡条件 对于中间点,流出量=流入量,即对每个
式中,V (f )称为这个可行流f 的流量,即发点的净输出量(或收点的净输入量)。
2. 试写出求解最短径路的Dijkstra 算法的步骤。
【答案】Dijkstra 算法的步骤为:
(l )给v s 以p 标号,P (v S )二0,其余各点均给T 标号,T (v i )=+∞。
(2)若v i 点为刚得到P 标号的点,考虑这样的点v i ,(v i ,vj )属于E ,且v i 为T 标号。对v j 的T 标号进行如下修改:T (v j )=min[T(v i ),p (v i )+lij ]
(3)比较所有具有T 标号的点,把最小者改为P 标号,即:
当存在两个以
上最小者时,可同时改为P 标号。若全部点均为P 标号时停止,否则用代V i 转回(2)。
二、计算题
3. 工件按泊松流到达服务台,平均间隔时间为10分钟,假设对每一工件的服务(加工)所需时间服从负指 数分布,平均服务时间为8分钟。求:
(l )工件在系统内等待平均数和工件在系统内平均逗留时间。
(2)若要求有90%的把握使工件在系统内的逗留时间不超过30分钟,则工件的平均服务时间最多是多少?
(3)若每一工件的服务分二段,每段所需时间都服从负指数分布,平均都为4分钟。在这种情况下,工件 在系统内的平均瘦身是多少?
【答案】(l )
该模型为
(2)工作系统内逗留时间服从参数为刀
平均服务时间最多为5.656min (3)
的负指数分布。
4. 在某单人理发店顾客到达为泊松流,平均到达间隔为20 min,理发时间服从负指数分布,平均时间为 15 min。求:
(l )顾客来理发不必等待的概率; (2)理发店内顾客平均数; (3)顾客在理发店内平均逗留时间;
(4)若顾客在店内平均逗留时间超过1.25h ,则店主将考虑增加设备及理发员,问平均到达率提高多少时,店主才做这样的考虑?
【答案】该系统为M/M/1模型,
5. 已知世界六大城市:P e ,N ,P a ,L ,T ,M 。试在表所示交通网络的数据中确定最小树。
表
【答案】将表用图形的形式表示出来,如图所示。
图
(1)采用避圈法。从图中选取权数最小的边[L,P a ]; 从未选的边中,选取权最小的边[Pe ,T]:依次进行,并使得它们相互不构成圈,直到再也不能选取出边为止。经过五次选边,得到边集合 {[L,P a ],[Pe ,T],[M,N],[L,N],[Pe ,L]}构成了唯一的最小支撑树,如图所示,此最小支撑树的总权为119。
图
(2)采用破圈法。应用破圈法的原理,依次进行破圈,直到所有边构成的图中不含有圈为止。所得到的结 果与上述避圈法的相同。