2017年兰州财经大学统计学院432统计学[专业硕士]之统计学考研强化模拟题
● 摘要
一、简答题
1. 简述古典概率法和经验概率法如何定义事件发生的概率。
【答案】概率的古典定义是,如果某一随机试验的结果有限,而且各个结果出现的可能性相等,则某一事件A 发生的概率为该事件所包含的基本事件数m 与样本空间中所包含的基本事件数n 的比值,记为:
经验概率又称主观概率,是指对一些无法重复的试验,只能根据以往的经验,人为确定这个事件的概率。
2. 何谓统计分组?统计分组有哪些作用?
【答案】根据统计研宄的目的和客观现象的内在特点,按某个标志(或几个标志)把被研宄的总体划分为若干个不同性质的组,称为统计分组。
统计分组的作用有:(1)发现社会经济现象的特点与规律;(2)将复杂的社会经济现象划分为性质不同的各种类型;(3)反映总体内部结构;(4)揭示现象之间的依存关系。
3. 下面两个统计图分别是对某数据集中y 关于x 的线性回归分析后的残差(Residuad )请指出这个回归分析所存在的问题,并提出解诀方案。
【答案】由残差图可知,两个变量之间可能为非线性关系。表明所选择的线性回归分析模型不合理,应该考虑选 用非线性模型。处理非线性回归的基本方法是,通过变量变换,将非线性回归化为线性回归,然后用线性 回归方法处理。假定根据理论或经验,已获得输出变量与输入变量之间的非线性表达式,但表达式的系 数是未知的,要根据输入输出的n 次观察结果来确定系数的值。按最小二乘法原理来求出系数值。
此外,残差连续的出现在横坐标轴的上面或下面,两个变量也可能存在正自相关问题,即线性回归模型扰动 项的方差-协方差矩阵的非主对角线的元素不全为0, 存在扰动项的自相关。可以采用检验,检验方程是否存在一阶自相关问题,或采用
检验高阶自相关问题。如果存在自
相关,可以采用可行广义最小二乘法或仍用法,但使用方差-协方差矩阵的稳健估计值。
4. 在研宄方法上,参数估计与假设检验有什么相同点和不同点?
【答案】(1)参数估计和假设检验的相同点
①是根据样本信息推断总体参数;
②都以抽样分布为理论依据,建立在概率论基础之上的推断,推断结果都有风险;
③对同一问题的参数进行推断,使用同一样本、同一统计量、同一分布,因而二者可以相互转换。
(2)参数估计和假设检验的不同点
①参数估计是以样本资料估计总体参数的可能范围,假设检验是以样本资料检验对总体参数的先验假设是否成立;
②区间估计求得的是以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;
③区间估计立足于大概率,通常以较大的把握程度(可信度)去估计总体参数的置信区间;假设检验立足于小概率,
通常是给定很小的显著性水平去检验对总体参数的先验假设是否成立。
5. 要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?
【答案】方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也增加了分析的可靠性。
检验多个总体均值是否相等时,如果作两两比较,则需要进行多次的检验。随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会増加(并非均值真的存在差别)。而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。
6. 正态分布所描述的随机现象有什么特点?为什么许多随机现象服从或近似服从正态分布?
【答案】(1)正态分布所描述的随机现象具有如下特点: ①正态曲线的图形是关于的对称钟形曲线,且峰值在处;
②正态分布的两个参数均值和标准差一旦确定,正态分布的具体形式也就唯一确定,不同参数取值的 正态分布构成一个完整的“正态分布族”。
③正态分布的均值可以是实数轴上的任意数值,它决定正态曲线的具体位置,标准差相同而均值不同 的正态曲线在坐标轴上体现为水平位移。 ④正态分布的标准差
⑤当为大于零的实数,它决定正态曲线的“陡_”或“扁平”程度。越大,正态曲线 越扁平;越小,正态曲线越陡峭。 的取值向横轴左右两个方向无限延伸时,正态曲线的左右两个尾端也无限渐近横轴,但理论上永远不会与之相父。
⑥与其他连续型随机变量相同,正态随机变量在特定区间上的取值概率由正态曲线下的面积给出,而且其曲线下的总面积等于1。
(2)如果原有总体是正态分布,那么,无论样本量的大小,样本均值的抽样分布都服从正态分布。若原有 总体的分布是非正态分布,随着样本量的增大(通常要求
方差为总体方差的,不论原来的总)体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值这就是统计上著名的中心极限定理。因此许多随机现象服从或近似服从正态分布。
7. 什么是抽样平均误差?影响抽样平均误差的因素有哪些?
【答案】抽样平均误差是指抽样平均数(或抽样成数)的标准差。它反映抽样平均数(或抽样成数)与总体平均数(或总体成数)的平均误差程度。
影响抽样平均误差的因素有四个:
(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越少;抽样数目越少,抽样误差越大。当时,就是全面调查,抽样误差此时为零。
(2)总体标志变动程度。其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。
(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的抽样误差相差很小,可忽略不计。
(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。
8. 什么叫变异、变量和变量值,试举例说明。
【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、女;年龄标志表现为20岁、30岁等。
变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:
(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;
“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、
“次品”等;
(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……
9. 如果有百分之五的人是左撇子,而小明和他弟弟都是左撇子;那么小明和他弟弟都是左撇子这个事件的 概率是不是0. 05X0. 05=0. 00257?为什么?
【答案】不是。
显然,小明和他弟弟都是左撇子的事件不是独立的,所以这种计算方法错误。
相关内容
相关标签