当前位置:问答库>考研试题

2017年南京财经大学经济学院432统计学[专业硕士]之统计学考研冲刺密押题

  摘要

一、简答题

1. 说明条形图和直方图的区别和联系。

【答案】(1)条形图与直方图的区别

①形图是用条形的长度表示各类别频数的多少,其宽度则是固定的;直方图是用面积表示各组频数的多少, 矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。

②由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。 ③条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。

(2)联系

两者都是用矩形表示数据分布情况;当矩形的宽度相等时,都是用矩形的高度来表示数据的分布情况。

2. 简述标准化值的意义及计算公式。

【答案】变量值与其平均数的离差除以标准差后的值称为标准分数,也称标准化值或分数。其计算公式为:

标准差。

标准分数可以测量每个数据在该组数据中的相对位置,并可以用它来判断一组数据是否有离群数据。比如, 如果某个数值的标准分数为就知道该数值低于平均数1.5倍的标准差。在对多个具有不同量纲的变量进行处理时,常常需要对各变量进行标准化处理。实际上,z 分数只是将原始数据进行了线性变换,它并没有改变一个数据在该组数据中的位置,也没有改变该组数据分布的形状,而只是将该组数据变为平均数为0, 标准差为1。

3. 什么是同度量因素?同度量因素在编制加权综合指数中有什么作用?

【答案】在统计学中,一般把相乘以后使得不能直接相加的指标过渡到可以直接相加的指标的那个因素,称为同度量因素或同度量系数。

在编制指数时,对于不能直接相加的指标,可通过同度量因素把指标过渡到具有可加性。 式中为变量的标准化值,是该组数据均值,s 为该组数据的

4. 说明回归模型的假设以及当这些假设不成立时的应对方法。

【答案】(1)多元回归模型的基本假定有: ①自变量

③对于自变

④误差项是一个服从正态分布的随机变量,且相互独立,即

(2)若模型中存在多重共线性时,解决的方法有:

第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。

第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。

若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性

,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。

若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。

5. 利用相关系数如何判断变量之间相关的方向和相关关系的密切程度?

【答案】相关系数r 的取值范围在关关系;若

相关关系;若

相关关系。

说明两个变量之间的线性关系越强

时. 可视为中度相关;说明两个变量之间的线性关系越弱。对于一时,

可视为高度相关时,说明两个变量之间的个具体的r 取值,根据经验可将相关程度分为以下几种情况:

当时。视为低度相关;

当之间。若

表明变量之间存在正线性相表明x 与y 之间存在负线性相关关系;若表明x 与y 之间为完全负线性相关关系。可见当表明x 与y 之间为完全正线性时,y 的取值完全依赖于X , ; 是非随机的、固定的,且相互之间互不相关(无多重共线性) 的方

差都相同,且不序列相关,

的所有

值②误差项s 是一个期望值为0的随机变量,即二者之间即为函数关系;当r=0时,说明两者之间不存在线性相关关系,但可能存在其他非线性

相关程度极弱,可视为不相关。但这种解释必须建立在对相关系数的显著性检验的基础之上。

6. 考虑总体参数的估计量,简述无偏估计量与最小方差无偏估计量的定义。

【答案】①无偏性(unbiasedness )是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为所选择的估计量为如果则称为的无偏估计量。对于待估参数,

不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来 衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。尽管在一次抽样中得到的估计值不一定恰好 等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,即希望估计量 的均值应等于未知参数的真值,这就是无偏性的要求。 ②最小方差无偏估计是在无偏估计类中使均方误差达到最小的估计量,即在均方误差

是的一个无偏估计量,都有

则称是的一致最小方差无偏估计。

7. 给出在一元线性回归中:

(1)相关系数的定义和直观意义;

(2)判定系数的定义和直观意义;

(3)相关系数和判定系数的关系。

【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若相关系数是根据总体全部数据计算的,称为总体相关系数,记为

称为样本相关系数,记为r 。样本

相关系数的计算公式为:

按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 若是根据样本数据计算的,则最小意义下的最优估计,它是在应用中人们希望寻求的一种估计量。设若对于的任一方差存在的无偏估计量与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。

(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:

判定系数测度了回归直线对观测数据的拟合程度。

的取值范围是越接近于1, 表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来答释y 值变

差的部分就越多,回归直线的拟合程度就越好;反之,越接近于0, 回归直线的拟合程度就越差。

(3)相关系数和判定系数都是用来表明X 与Y 的关系,即X 对Y 的拟合程度。在一元线性回归中,相关系数实际上是判定系数的平方根。相关系数取值范围在卜之间。判定系数取值范围在[0, 1]之间。