当前位置:问答库>考研试题

2018年聊城大学教育科学学院312心理学专业基础综合之现代心理与教育统计学考研核心题库

  摘要

一、概念题

1. 相关系数

【答案】相关系数是两列变量间相关程度的指标。相关系数的取值在-1到+1之间,常用小数表示,其正负号表示方向。如果相关系数为正,则表示正相关,两列变量的变化方向相同。如果相关系数为负值,则表示负相关,两列变量的变化方向相反。相关系数取值的大小表示相关的强弱程度。如果相关系数的绝对值在1.00与0之间,则表示不同程度的相关。绝对值接近1.00端,一般为相关程度密切,接近0值端一般为关系不够密切。0相关表示两列变量无任何相关性。

2. 观测值

【答案】随机变量所取得的值,称为观测值。

3. 概率

【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:

a.P

两互不相容对一

切,则

(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。

4. 个体

【答案】个体(individual )亦称“单位”、“样品”,统计学术语指总体中的每一个单位、样品或成员。是统计调查、试验或观测的最基本对象,是构成样本、总体的最小单元。在心理学研宄中,个体根据研宄目的不同,可以是人,也可以是人在某种实验条件下的某个反应,或每个实验结果、每个数据。

二、简答题

5. 试比较完全随机设计与随机区组设计的优缺点。

【答案】(1)完全随机设计

计的方差分析的方差分析,就是对单因素组间设

在这种实验研究设计中,各种处理的分类仅以单个实验变量为基础,因而,把它称为单因素方差分析或单向方差分析。随机区组设计由于同一区组接受所有实验处理,使实验处理之间有相关,因此又称之为相关组设计,或称被试内设计。

(2)与完全随机设计相比,随机区组设计最大优点是考虑到个别差异的影响。这种由于被试之间性质不同导致产生的差异就称为区组效应。随机区组设计可以将这种影响从组内变异中分离出来,从而提高效率。随机区组设计设计也有不足,主要表现为划分区组困难,如果不能保证同一区组内尽量同质,则有出现更大误差的可能。

(3)与随机区组设计相比,完全随机设计的优点是完全按照随机化的原则安排实验处理和被试,完全随机设计的缺点是实验误差既包括实验本身的误差,又包括被试个别差异引起的误差,无法分离,被试的数量随着实验处理数的増加而增加,因而它的效率受到一定限制。

6. 正态分布的特征是什么,统计检验中为什么经常要将正态分布转化成标准正态分布?

【答案】正态分布也称常态分布或常态分配。是连续随机变量概率分布的一种。描述正态分布曲线的一般方程为:

式中:是圆周率3.1415…

是自然对数的底2.71828…

为随机变量取值为理论平均数

为理论方差

为概率密度,即正态分布的纵坐标。

(1)正态分布的特征

①正态分布的形式是对称的,它的对称轴是经过平均数点的垂线,正态分布中,平均数、中数、众数三者相等,此点y 值最大(0.3989)。左右不同间距的y 值不同,各相当间距的面积相等,y 值也相等。

②正态分布的中央点(即平均数点)最高,然后逐渐向两侧下降,曲线的形式是先向内弯,然后向外弯,拐点位于正负1个标准差处,曲线两端向靠近基线处无限延伸,但终不能与基线相交。

③正态曲线下的面积为1, 由于它在平均数处左右对称,故过平均数点的垂线将正态曲线下的面积划分为相等的两部分,即各为0.50。正态曲线下各对应的横坐标(即标准差)处与平均

数之间的面积可用积分公式计算。因正态曲线下每一横坐标所对应的面积与总面积(总面积为1)之比其值等于该部分面积值,故正态曲线下的面积可视为概率,即值为每一横坐标值(x 加减一定标准差)的随机变量出现的概率。

④正态分布是一族分布。它随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。如果平均数相同,标准差不同,这时标准差大的正态分布曲线形式低阔;如果标准差小,则正态曲线的形式高狭。

⑤正态分布下,标准差与概率有一定数量关系。

(2)统计检验中经常将正态分布转化为标准正态分布是因为标准正态分布的Z 分数不仅能表明原始分数在分布中的地位,而且能在不同分布的各个原始分数之间进行比较,同时,还能用代数方法处理,因此,它被教育统计学家称为“多学科表示量数”,有着广泛的用途。

①用于比较几个分属性质不同的观测值在各自数据分布中相对位置的高低。

Z 分数可以表明各个原始数据在该组数据分布中的相对位置,它无实际单位,可对不同的观测值进行比较。这里所说的数据分布中相对位置包括两个意思,一个是表示某原始数据以平均数为中心以标准差为单位所处距离的远近与方向;另一个意思是表示某原始数据在该组数据分布中的位置, 即在该数据以下或以上的数据各有多少。如果在一个正态分布(或至少是一个对称分布)中,这两个意思可合二为一。但在一个偏态分布中,这两个意思就不能统一。

在实际的教育与心理研究中,经常会遇到属于几种不同质的观测值,此时,不能对它们进行直接比较,但若知道各自数据分布的平均数与标准差,就可分别求出Z 分数进行比较。

一个原始分数被转换为Z 分数后,就可知道它在平均数以上或以下几个标准差的位置,从而知道它在分布中的相对地位。当原始分数的分布是正态分布时,只要求出分布中某一原始分数的Z 分数,就可以通过查正态分布表得知此原始分数的百分等级,从而知道在它之下的分数个数占全部分数个数的百分之几,进一步明确此分数的相对地位。

②计算不同质的观测值的总和或平均值,以表示在团体中的相对位置。

不同质的原始观测值因不等距,也没有一致的参照点,因此不能简单地相加或相减。计算平均数时要求数据必须同质,否则会使平均数没有意义。但是,当研究要求合成不同质的数据时,如果已知这些不同质的观测值的次数分布为正态,这时可采用Z 分数来计算不同质的观测值的总和或平均值。

③表示标准测验分数。

经过标准化的教育和心理测验,如果其常模分数分布接近其正态分布,为了克服标准分数出现的小数、负数和不易为人们所接受等缺点,常常是将其转换成正态标准分数。转换公式为: