当前位置:问答库>考研试题

2018年山东大学哲学与社会发展学院312心理学专业基础综合之现代心理与教育统计学考研核心题库

  摘要

一、概念题

1. 检验的显著性水平

【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。

2. 四分差

【答案】四分差又称四分位差,是差异量数的一种。计算公式:

位数,第三个四分第一个四分位数。在次数分配上第一个四分位数与第三个四分位数之间包含着全体项数的一半。次数分配越集中,离中趋势越小,则这二者的距离也越小。根据这两个四分位数的关系,观测次数分配的离散程度也可以得到相当高的准确性。因此,四分差可以说明某系列数据中间部分的离散程度,并可避免两极端值的影响。四分差通常与中数联系起来共同应用,不适合进一步代数运算,反应不够灵敏。

3. 抽样误差

【答案】抽样误差指由抽样而造成的样本参数与总体参数之间差异或各样本参数之间差异。比如:样本平均数与总体平均数之间差异或各样本平均数之间差异。在抽样研究中,抽样误差是不可避免的,但可以估计其大小。

4. 古典概率

【答案】古典概率也叫先验概率,是指在特殊情况下直接计算的比值。计算方法是事件A 发生的概率等于A 包含的基本事件数M 与基本事件总数N 之比。古典概率是最简单的随机现象的概率计算,建立在这样几个特定条件上的,即:事件的互斥性、事件的等概率性以及事件组的完备性。

二、简答题

5. 完全随机设计的方差分析与随机区组方差分析最重要的区别是什么?

【答案】完全随机设计的方差分析与随机区组的方差分析最重要的区别在于组内方差。随机区组方差分析中,将组内方差分解为组内误差和区组方差。

6. 简述条形图与直方图的区别。

【答案】条形图与直方图的区别:

①描述的数据类型不同。条形图用来描述称名型数据或计数数据,而直方图主要用来描述分组的连续性数据;

②表示数据多少的方式不同。条形图用直条的长短或高低表示数据的多少和大小,而直方图用面积表示数据的多少和大小。直方图的总面积与总次数相等;

③坐标轴上的标尺分点意义不同。条形图的一个坐标轴是分类轴,而直方图的一个坐标轴上表示的是另一个刻度值;

④图形直观形状不同。条形图之间有间隔,直条与直条之间的间隔大小没有任何关系,不表示任何意义。直方图各个直方块之间紧密相接,没有间隙,当在某一数据上面分布的人数极少或没有,会出现断点。因此,在使用过程中,要注意二者之间的区别。

7. 学业考试成绩为X ,智力测验分数为y ,已知这两者的rxy=0.5, IQ=100+15z, 某学校根据学

,录取率为15%,若一个智商为115的学生问你他被录取的可能性为多少,业考试成绩录取学生

你如何回答他?

【答案】由

为可以看出学业考试成绩与智力测验分数只存在中等相关且可知测定系数即学业成绩的变异中只有25%由智商引起,也就是智力测验分数的多少不能作

智商为115, 由可以得出z=l。这个标准分数显示了这个学生在同龄儿童中的相为预测学业考试成绩的较好指标。 对位置,说明这个学生处于同龄学生构成的常模中一个标准差的位置。大概在0.3413的位置,按照正态分布表,其以上还有大约15.87%的人数。因此,如果某学校根据学业考试成绩录取学生,录取率为15%,那么这个学生很有可能录取不上。但是由于智力测验只代表某种程度上的智力表现,而且学校的学业测验与智力测验相关系数不大,所以只能作为参考,不能用来计算和预测。应该告诉他不要迷信测验,认真备考,任何可能性都有。

8. 为什么要建立回归方程?

【答案】(1)回归方程是通过回归分析以数学方式表示变量间的关系。如果通过相关分析显示出变量间的关系非常密切,则通过所求得的回归方程可获得相当准确的推算值。

(2)在心理学的实际研究中,回归分析是探讨变量间数量关系的一种常用的统计方法。它通过建立变量之间的数学模型对变量进行预测和控制。通过回归分析建立回归方程,表达数量之间的规律。例如,一元线性回归方程:

位时,将变化变化b 个单位。 它表示x 与y 的线性关系。式中称作估计值,为常数,表示该直线在Y 轴上的截距,常数b 表示该直线的斜率,即当JC 变化一个单

(3)根据自变量是一个还是多个,回归分析可划分为一元回归分析和多元回归分析。一元回归分析只能处理一个因变量和一个自变量的关系,并根据回归方程由自变量推测因变量。多元回归可决定一个因变量和多个自变量之间的关系,通过建立多元回归方程式,对未知的因变

量做出预测。

三、计算题

9. 一个样本中有18个被试,随机分成两组,要求他们学习20个某种不熟悉的外语词汇。给两组被试视觉呈现这些词的方式不一样,但所有的被试在测试前都有时间研究这些词。每个被试的

错误个数记录如下。第一组的两个学生未参加测试。请检验两种呈现方式下平均错误数是否相同。

方式A :

方式B :

【答案】假设实验数据正态分布。被试随机分组因此是独立样本平均数差异检验。问题为平均错误数是否相同因此是双侧检验。

(1)对原始数据进行描述统计

方式A :

方式B :

①提出假设 两总体方差齐性

两总体方差不齐性

②选择检验的统计量并计算其值

③确定显著性水平及临界值

当α=0.05时,

④作出统计决断 因为①提出假设所以接受即两总体方差齐性。 (3)两总体方差齐性因此按照两总体方差齐性的独立样本平均数差异检验进行。 即两种呈现方式下平均错误数相同

即两种呈现方式下平均错误数不相同

②选择检验的统计量并计算其值

③确定显著性水平及临界值

当α=0.05时,

④作出统计决断

(2)由于两总体的方差未知,因此需要先进行方差齐性检验。