当前位置:问答库>考研试题

2017年湖南师范大学量子力学复试实战预测五套卷

  摘要

一、计算题

1. 一粒子在一维无限深势阱【答案】由一维定态薛定谔方程有

又在边界处应该满足连续条件故

由归一化条件有故对应能量为

2. —个电子在沿正Z 方向的均匀磁场B 中运动(只考虑自旋),在t=0时测量到电子自旋沿正X 方向,求在t >0时的自旋波函数以及的平均值. 【答案】

表象下,

可以解得

其中

时态矢为:

分别为朝上和朝下时的波函数.

即t=0

中运动,求粒子的能级和对应的波函数.

时刻电子自选波函数

电子由于自旋产生的能量对应哈密顿量为:故

状态为的本征态,对应本征值为:

t >0时刻电子自旋波函数应为

写成矩阵形式,即

平均值为

3. 自旋为时,粒子处于(2)求出t >0时

固有磁矩为

的状态。

的可测值及相应的取值几率。

(其中为实常数)的粒子,处于均匀外磁场

中,设t=0

(1)求出t >0时的波函数; 【答案】(1)体系的哈密顿算符为在泡利表象中,哈密顿算符的本征解为:在t= 0时,粒子处于为了求出

的状态,即

在泡利表象中的具体形式,需要求解满足的本征方程:

解得:于是,有:

由于,哈密顿算符不显含时间,故/>0时刻的波函数为:

(2)因为

所以是守恒量,它的取值几率与平均值不随时间改变,换句话说,只要计

算t=0时的取值几率就知道了t >0时的取值几率。 由于

的取值几率为:

因此有:

故有:

4. 若两个中子的相互作用哈密顿为是什么。(设没有外场)

【答案】解法一:

设总自旋

则:

其中g 为作用常数,和

分别为两个中子的自

旋算符, 求分的本征值和本征函数。如果同时计入中子的空间波函数,则两中子体系的总波函数

而两中子的自旋波函数只有四种情况(即有4个本特征态)。 自选交换对称波函数:

自旋交换反对称波函数:

显然

对易,二者有共同的本征态:

即的本征值为

的对应波函数为

即的本征值为解法二:选择的本征态为对应特征值因为

时对应的函数为

表象(因为

(对应特征值的本征态,

),对应本征值

相互对易)。

(对应本征值本征态为

)。

对易,所以两中子的体系的波函数可以由的本征态的乘积构成如下四种情

况(结合全同粒子满足的波函数的对称性要求):

自旋交换对称态: