2018年沈阳师范大学学前与初等教育学院617心理学基础之现代心理与教育统计学考研核心题库
● 摘要
一、概念题
1. 检验的显著性水平
【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。
2. 概率
【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:
a.P
两互不相容对一
切,则
(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。
3. 参数检验(parametric test)
【答案】参数检验是统计假设检验的一种。与“非参数检验”相对。适用于总体分布形式已知。且仅由少数几个参数便可确定的条件下。其检验方法常是基于正态性的假定,如t 检验、F 检验、正态线性回归、狭义多元分析等。其主要缺点在于,因其受到严格的关于正态性的条件限制,而大大制约了这类检验的应用或可信度的保证。
4. 随机变量
【答案】随机变量(random variable)是在样本空间的全部事件集上的一个实值函数。通常随机变量用大写字母x ,y , z 等表示,或者希腊字母,…等表示。分离散型随机变量和连续型随机变量两类。离散型随机变量是指所有可能的取值个数是有限的或至多可列的随机变量。
如随机抽取任一学生观察其性别,其样本空间只有两个男性和女性样本点,
即
随机变量X 只取两个值:即当某学生
是男生时,x 取1; 当学生是女生时,x 取0。连续型随机变量是指可能在一个连续区间内或整个实数范围内取值的随机变量。如,在12岁的学生总体中,随机抽一个观测其身高y 。此随机试验的样本空间
机现象。
是大于0的实数集。随机变量y 可在一个连续区间内取值。随机变量的引进使概率论能使用精密的数学工具(如微积分、代数、实变函数、测度论等)来处理和分析随
二、简答题
5. 试解释交互作用。
【答案】(1)下面是两个2×2的实验设计范式:
图1 2×2实验设计图示例
在实验甲中,A 因素从变化
为
还是时,无论
在还
是水平
,
与的差都
是说明A 因素的变化与或
称之为没有交互作用。
在实验乙中,在时时在时在时表明A 因素的变化与B 因即B 因素的变化与A 因素的不同水平有关;同样在无关。同样B 因素从变化为时,无论水平上,都等于3, 说明B 因素的变化与或无关。因此A ,B 两个因素彼此不影响,
素的水平也有关。在这种情况下,要考虑A ,B 两个因素的彼此影响,即“交互作用”,用AXB 表示。运用多因素方差分析,不仅能检验出各个因素对因变量的影响,还可以检验出因素与因素相结合共同发生的影响,即这种交互作用。
如要直观分析两个因素间是否有交互作用,还可以将上述情况制作成交互作用图,如图2所示。用图来表示交互作用时,一个是比较折线位置的高低,一个是比较折线在不同折点上的变化。基本原则是观察折线之问的平行程度。一般在交互作用图中,如果A , B 二因素间没有交互作用,则两线平行,表示因素之间相互独立;两线越不平行,代表因素之间交互作用越明显。一般而言,显著的交互作用,在交互作用图上会出现交叉的折线。当然,这只是直观示意,交互作用是否显著,必须进行方差分析。
图2 交互作用图解
6. 选用统计方法有哪几个步骤?
【答案】一项实验研究结果要用何种统计方法去分析,需要对实验数据进行认真的分析。只有做到对数据分析正确,才能对统计方法做出正确地选用。
(1)要分析一下实验设计是否合理,即所获得的数据是否适合用统计方法去处理,正确的数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的。
(2)要分析实验数据的类型。不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要。
(3)要分析数据的分布规律,如总体方差的情况,确定其是否满足所选用的统计方法的前提条件。
7. 哪些测量和统计的原因会导致两个变量之间的相关程度被低估。
【答案】影响两个变量之间的相关程度被低估的原因有:
(1)测量原因:测量方法的选择、两个变量测验材料的选择和收集、测量工具的精确性、测量中出现的误差、测验中主试和被试效应、测量的信度和效度、测验分数的解释等。
(2)统计原因:全距限制,指相关系数的计算要求每个变量内各个分数之间必须有足够大的差异,数值之间必须有显著的分布跨度或变异性,所以全距限制问题会导致低相关现象;没有满足计算相关系数的前提假设也会低估相关系数,比如用皮尔逊相关计算非线形关系的两个变量间的相关系数。
8. 为什么要建立回归方程?
【答案】(1)回归方程是通过回归分析以数学方式表示变量间的关系。如果通过相关分析显示出变量间的关系非常密切,则通过所求得的回归方程可获得相当准确的推算值。
(2)在心理学的实际研究中,回归分析是探讨变量间数量关系的一种常用的统计方法。它通过建立变量之间的数学模型对变量进行预测和控制。通过回归分析建立回归方程,表达数量之间的规律。例如,一元线性回归方程:它表示x 与y 的线性关系。式中称作估计值,为常数,表示该直线在Y 轴上的截距,常数b 表示该直线的斜率,即当JC 变化一个单
相关内容
相关标签