2017年江苏师范大学智慧教育学院(计算机学院)运筹学复试仿真模拟三套题
● 摘要
一、简答题
1. 说明本书所述货运车辆优化调度算法的原理和求解步骤,并绘出求解过程框图。请简要回答以下问题。
(1)若有两种车型的车可用,书中提出的模型应怎样修改? 在书中所提算法的启发下,试拟定出一套求解的迭代步骤。
(2)你认为应如何将书中提出的模型和算法推广到多目标的情形。
【答案】①货运车辆优化调度算法的原理:最小费用最大流原理。求解步骤为:a. 仅考虑重载点,运用表上作业法求出最优解作为原问题的可行解; b. 进行解的扩展和解的收缩,直至得到可接受的可行解; c. 以该可接受的可行解为依据确定初始行车线路; d. 根据具体约束条件进行调整,直至得到最优行车路线。求解过程框图如图所示。
图
(2)修改后的迭代算法即神经网络(neural networks)算法。
①建立结合矩阵:将车辆经过的点包括源点看成神经网络的结点,即神经元,令神经元数目为Ni 神经元 和j 神经元的结合权值为,j 神经元的输出为r j 。
②将车辆调度的各种约束条件转化为约束能量函数为E 约。
,且r i (t )只能取0或1,令神经元i 的阈③神经网络计算:令时刻t 神经元i 的输出为r i (t )
值为Q i ,则输出能量
为
,其中,因此总的能量函数
为,则该网络相对处于稳定状态。由于如
果,且E 有界,系统必
趋向一个比较好的稳定状态,再把此稳定状态时r i (t ) 形成换位阵中元素为l 的结点连接起来,形成所求的最满意车辆调度线路。
④根据所形成的最满意线路来选择车辆调度方案。
(3)推广到多目标情形:车辆优化的目标函数可以有很多个,如总运费最小,司机总的驾驶时间最短,车 辆满载行驶的时间最长等; 而约束条件,如路径的最大输入输出流、车载量、发车和收车约束等。也可以加入惩 罚算子将约束条件转化为惩罚函数,利用多目标方法进行求解。
2. 在线性规划的灵敏度分析中,当基变量的价值系数变化后,最优表中哪些数据会发生变化,怎样变化。
【答案】基变量的价值系数变化后,可能会引起伏表中基变量检验数的变化。 设Cr 是基变量Xr 的系数。因,当Cr 变化△Cr ,时,就引起C B 的变化,这时有:
可见,当Cr 变化成△Cr 后,最终表中的检验数是:
二、计算题
3. 某工厂年产A 零件250个,工厂自己年需70个,如果一次装配准备费为36万元,又每个零件年存储费 为0.4万元。求在满足需求的条件下,该产品生产周期以及每次生产的时间和数量。
,且已知
【答案】由题意知,该题模型为“不允许缺货,生产需要一定时间”
最优存贮周期为
经济生产批量为
结束生产时间为
最大库存为
平均总费用为
4. 某农场有3万亩农田。打算种植玉米,大豆和小麦三种作物。预计秋后玉米每亩可收获500千克,售价为0.24元/千克; 大豆每亩可收获200千克,售价为1.20元/千克; 小麦每亩可收获300千克,售价为0.70元/千克。农场年初计划时考虑如下目标:
P 1:年终收益不低于350万元;
P 2:总产量不低于1.25万吨;
P 3:小麦产量以0.5万吨为宜;
P 4:大豆产量不超过0.2万吨;
试建立该农场生产计划的数学规划模型(只建立模型,不用求解)。
【答案】设玉米、大豆和小麦各种植x 1, x 2, x 3亩。则按照决策者的意愿可建立模型如下:
5. 设某工厂自国外进口一部精密机器,由机器制造厂至出口港有三个港口可供选择,而进口港又有三个可供选择,进口后可经由两个城市到达目的地,其间的运输成本如图中所标的数字,试求运费最低的路线。
图
【答案】设阶段变量k=1,2,3,4,依次表示4个阶段选择路线的过程; 状态变量s k 表示第k 阶段初可能处的位置; 决策变量x k 表示第k 阶段初可能选择的路线; 最优值函数
第k 阶段点s k 开始至终点E 的最少运费, 则有
表示从
相关内容
相关标签