2017年中国地质大学(武汉)经济管理学院958统计学原理之统计学原理考研强化模拟题
● 摘要
一、简答题
1. 若有线性回归模型
问:
(1)该模型是否违背古典线性回归模型的假定,请简要说明。
(2)如果对该模型进行估计,你会采用什么方法?请说明理由。
【答案】(1)该模型违背了古典线性回归模型的假定。古典线性回归模型要求误差项具有等方差性,即对于不同的自变量x 具有相同的方差。而由题意可知,误差项的方差为
量有关。
(2)如果对该模型进行估计,会采用加权最小二乘法。加权最小二乘法是在平方和中加入权
数以调整各项在平方和中的作用。即寻找参数的估计值使得离差平方和
与自变
其中
达到最小。这样,就消除了异方差性的影响。
2. 什么是抽样平均误差?影响抽样平均误差的因素有哪些?
【答案】抽样平均误差是指抽样平均数(或抽样成数)的标准差。它反映抽样平均数(或抽样成数)与总体平均数(或总体成数)的平均误差程度。
影响抽样平均误差的因素有四个:
(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越少;抽样数目越少,抽样误差越大。当时,就是全面调查,抽样误差此时为零。
(2)总体标志变动程度。其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。
(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的抽样误差相差很小,可忽略不计。
(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。
3. 什么叫变异、变量和变量值,试举例说明。
【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、女;年龄标志表现为20岁、30岁等。
变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:
(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;
“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、
“次品”等;
(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……
4. 什么是指数?它有哪些性质?
【答案】指数,或称统计指数,是分析社会经济现象数量变化的一种重要统计方法。它有如下一些性质:
(1)相对性。指数是总体各变量在不同场合下对比形成的相对数,它可以度量一个变量在不同时间或不同空间的相对变化,如一种商品的价格指数或数量指数。它也可以反映一组变量的综合变动,比如综合物价指数是根据一组商品价格的相对变化并给每种商品的相对数定以不同权数计算出来的,这种指数称为综合指数。另外根据对比两变量所处的是不同时间还是不同空间,它们计算出来的指数分时间性指数和区域性指数。
(2)综合性。综合性说明指数是一种特殊的相对数,它是由一组变量或项目综合对比形成的。比如,由若干种商品和服务构成的一组消费项目,通过综合后计算价格指数,以反映消费价格的综合变动水平。
(3)平均性。平均性含义有二:一是指数进行比较的综合数量是作为个别量的一个代表,这本身就具有平均的性质;二是两个综合量对比形成的指数反映了个别量的平均变动水平,比如物价指数反映了多种商品和服务项目价格的平均变动水平。
5. 在显著性检验过程中,经常遇到值这一概念,试回答以下问题:
(1)值能告诉我们什么信息?
(2)当相应的值较小时为什么要拒绝原假设?
(3)显著性水平与值有何区别?
【答案】如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率,称为值,也称为观察到的显著性水平。
(1)值是当原假设正确时,得到所观测的数据的概率。如果原假设是正确的话,值告诉我们这样的观测数据会有多么的不可能得到。相当不可能得到的数据,就是原假设不对的合理证据。
(2)值是反映实际观测到的数据与原假设明实际观测到的数据与之间不一致程度的一个概率值。值越小,说之间不一致的程度就越大,检验的结果也就越显著。
(3)是犯第I 类错误的上限控制值,它只能提供检验结论可靠性的一个大致范围,而对于一个特定的假设检验问题,却无法给出观测数据与原假设之间不一致程度的精确度量。也就是说,仅从显著性水平来比较,
如果选择的值相同,
所有检验结论的可靠性都一样。而值可以测量出样本观测数据与原假设中假设的值的偏离程度。
6. 何谓统计量?
【答案】设
函数
又称出分布、t 分布、F 分布是不是统计量?它们在统计分析中各有何用处? 是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个不依赖于任何未知参数,则称函数为样本统计量。当获得样本的一组具体观测值是一个统计量。通常,时,代入T ,计算的数值,就获得一个具体的统计量值。
从以上统计量的定义可以看出,当. 分布、t 分布、F 分布是由样本构造的函数,而且不依
分布、t 分布、F 分布中含有分布、t 分布、F 分布就是统计量;若赖于任何未知参数时,则.
未知参数,则它们就不是统计量。
分布:分布可以用来构造f 分布与F 分布,并且在假设检验与列联分析中做检验统计量。
t 分布:一般当时,f 分布与标准正态分布就非常接近。分布的诞生对于统计学中小样本理论和应用有着重要的促进作用。f 分布在假设检验与线性回归显著性检验中做检验统计量。
F 分布:在比较两个总体方差的假设检验时通常用F 分布,且F 分布在线性回归显著性检验与方差分析中做很重要的检验统计量。
7. 重复抽样和不重复抽样相比,抽样均值抽样分布的标准差有什么不同?
【答案】样本均值的方差与抽样方法有关。在重复抽样条件下,样本均值的方差为总体方差的即
去修正重复抽样时样本均值在不重复抽样条件下,样本均值的方差则需要用修正系数
的方差,即
对于无限总体进行不重复抽样时,可以按重复抽样来处理,因为其修正系数
对于有限总体,
当N 很大而n 很小时,
其修正系数
来计算。
8. 给出显著性检验中,P 值的含义,以及如何利用P 值决定是否拒绝原假设。 趋向于1; 也趋向于1,
这时样本均值的方差也可以按公式
【答案】P 值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P 值很小,说明这种情况发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设。P 值越小,我们拒绝原假设的 理由就越充分。
从研宄总体中抽取一个随机样本,计算检验统计量的值和概率P 值,即在假设为真的前提下,检验统计量大于或等于实际观测值的概率。如果
说明是较强的判定结果,拒绝假定的参