当前位置:问答库>考研试题

2018年北京建筑大学理学院818线性代数考研强化五套模拟题

  摘要

一、解答题

1. 已知A 是3阶矩阵,

(Ⅰ)证明

:(Ⅱ

)设

【答案】

(Ⅰ)由同特征值的特征向量,

又令即由

线性无关,得齐次线性方程组

因为系数行列式为范德蒙行列式且其值不为0,

所以必有

线性无关;

(Ⅱ)因为

,

所以

线性无关.

是3维非零列向量,若线性无关;

非零可知,

是A 的个

2. 设B

(I

)证明(II

)证明(III

)若【答案】⑴

矩阵

逆其中E 是n 阶单位矩阵.

且A 可对角化,

求行列式

第 2 页,共 43 页

专注考研专业课13

年,提供海量考研优质文档!

(II )

(Ⅲ)设

则由

或1. 又存在可逆矩阵p ,

使

或1.

3.

设n 维

列向量

【答案】记

线性无

关,其中S

是大于2的偶数. 若矩

试求非齐次线性方程组

的通解.

方程组①化为:

整理得,由

线性无关,得

显然①与②同解.

下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)

从而组的基础解系为数.

有无穷多解. 易知特解为

从而②的通解,即①的通解为

对应齐次方程A 为任意常

第 3 页,共 43 页

专注考研专业课

13年,提供海量考研优质文档!

4.

已知实二次

型的矩阵

A ,满

足且其

(Ⅰ)用正交变换xzPy

化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ)求出二次型【答案】(Ⅰ)由由

知,B

的每一列

满足

的具体表达式

.

知矩阵

A 有特征值即

是属于A 的特征值

.

与—

j

正交,于是有

的线性无关特征向

显然B 的第1,

2列线性无关

,从而知A

有二重特征值

对应的特征向量为

解得

正交化得:

再将正交向量组

单位化得正交单位向量组:

(Ⅱ)由于

则由正交变换

化二次型为标准形

4 页,共 43 页

相关内容

相关标签