2018年浙江大学动物科学学院314数学(农)之工程数学—线性代数考研基础五套测试题
● 摘要
一、解答题
1. 已知A 是3阶矩阵,
(Ⅰ)证明
:(Ⅱ
)设
【答案】
(Ⅰ)由同特征值的特征向量,
故
又令即由
线性无关,得齐次线性方程组
因为系数行列式为范德蒙行列式且其值不为0,
所以必有
线性无关;
(Ⅱ)因为
,
所以
即
线性无关.
求
是3维非零列向量,若线性无关;
且
非零可知,
是A 的个
令
故 2.
设
当a , b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C.
【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设则AC-CA=B
可变形为
专注考研专业课13年,提供海量考研优质文档!
即得到线性方程组
若要使C
存在,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,
故当a=-1,b=0时,线性方程组有解,即存在矩阵C , 使得AC-CA=B. 此时,
所以方程组的通解为
也就是满足AC-C4=B的矩阵C 为
其中
3. 设的所有矩阵.
为任意常数.
E 为三阶单位矩阵,求方程组Ax=0的一个基础解系;求满足AB=E
【答案】
(1)对系数矩阵A 进行初等行变换如下:
得到方程组Ax=0同解方程组得Ax=0的一个基础解系为
(2)显然B 矩阵是一个4×3矩阵,设对矩阵(AE )进行初等行变换如
下:
专注考研专业课13年,提供海量考研优质文档!
由方程组可得矩阵B 对应的三列分别为
即满足AB=£;
的所有矩阵为
其中为任意常数.
4. 设n 维列向
量
【答案】
记
线性无关,其中S 是大于2的偶数. 若矩
阵
试求非齐次线性方程组
的通解.
方程组①化为:
整理得
,由
线性无关,得
显然①与②同解.
下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)
从而组的基础解系为数.
有无穷多解.
易知特解为
从而②的通解,
即①的通解为
对应齐次方程
A 为任意常
二、计算题
相关内容
相关标签