当前位置:问答库>考研试题

2018年上海财经大学金融学院396经济类联考综合能力[专业硕士]之工程数学—线性代数考研仿真模拟五套题

  摘要

一、解答题

1.

(1)计算行列式∣A ∣;

(2)当实数a 为何值时,

线性方程组【答案】

有无穷多解?并求其通解.

若要使得原线性方程组有无穷多解,

则有及得

此时,

原线性方程组增广矩阵为

进一步化为行最简形得

可知导出组的基础解系为

非齐次方程的特解为

故其通解为k 为任意常

数.

2. 已知A

矩阵,齐次方程组

的基础解系是

有非零公共解,求a 的值并求公共解.

的解.

贝腕阵

又知齐

次方程组Bx=0

的基础解系是

(Ⅰ)求矩阵A ;

(Ⅱ

)如果齐次线性方程组

【答案】(1

)记

A

的行向量)是齐次线性方程组

的列向量(即矩阵

作初等行变换,有

得到

所以矩阵

的基础解系为

(Ⅱ)设齐次线性方程组Ajc=0与Sx=0

的非零公共解为由

线性表出,

故可设

作初等行变换,有

于是

则既可由

线性表出,也可

不全为

当a=0时,

解出

因此,Ax=0与Bx=0

的公共解为

3.

设三维列向量组

(Ⅱ)

【答案】(Ⅰ)由于4

个三维列向量全为0

的数

又向量组记

使得

线性无关;

向量组

构成的向量组一定线性相关,故存在一组不即,

线性无关,故

不全为0

,

即存在非零列向量

其中t 为任意常数.

线性无关.

和向量组

线性表示;

线性无关,

列向量组

(Ⅰ

)证明存在非零列向量

使得

可同时由向量组

时,

求出所有非零列向量

不全为0.

使得

可同时由向量组

和向量组向量

线性表示.

所有非零解,即可得所有非零

的系数矩阵A 施行初等行变换化为行最简形:

(Ⅱ)易知,

求出齐次线性方程组下面将方程组

于是,方程组的基础解系可选为

_意非零常数.

因此,

所有非零列向量

4. 已知实二次

的矩阵A ,满

所有非零解

_

t 为任

(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ

)求出二次型【答案】(Ⅰ)

由由

知,B

的每一列

满足

的具体表达式.

知矩阵A

有特征值即

是属于A 的特征值

.

与—

j 正交,于是有

的线性无关特征向

显然B 的第1, 2列线性无关

,量,从而知A

有二重特征值

对应的特征向量为

解得

正交化得: