2017年上海应用技术学院机械制造及其自动化825运筹学考研强化模拟题
● 摘要
一、判断题
1. 若需将某工程项目工期缩短到了10天,简单可行的方法是:任意找出该项目网络中一条关键路线,采取 必要措施将其缩短到10天即可。
【答案】√
【解析】若网络计划图的计算工期大于上级要求的工期时,必须根据要求计划的进度,缩短工程项目的完工 工期。主要采取以下措施,增加对关键工作的投入,以便缩短关键工作的持续时间,实现工期缩短。 ①采取技术措施,提高工效,缩短关键工作的持续时间,使关键线路的时间缩短; ②采取组织措施,充分利用非关键工作的总时差,合理调配人力、物力和资金等资源。
2. 运输问题按照最小元素法给出的初始基可行解,从每一空格出发可以找出且仅能找出惟一的闭合回路。( )
【答案】√
【解析】从每一空格出发一定存在和可以找到惟一的闭回路。因(m+n-l)个数字格(基变量)对应的系数向量是一个基。任一空格(非基变量)对应的系数向量是这个基的线性组合。而这些向量构成了闭回路。
3. 如果线性规划问题有最优解,则它一定是基可行解。( )
【答案】√
【解析】基解且可行才有可能是最优解。
4. 任一图G=(V ,E )都存在支撑子图和支撑树。( )
【答案】×
【解析】当图中存在一个顶点,其次为O 时,则该图不存在支撑树。
二、填空题
5. 某整数规划模型,解其松弛问题得到最优解。若其中某分量x j 二场为非整数,用分支定界法求解时,针对 该分量构造的两个约束条件应为:_____。
【答案】
【解析】由分支定界法的原理可以,良容易得至“结果,其中〔b j 〕为不大于bj 的最大整数。
6. Fibonacoi 法在[2,6]区间上取的初始点是_____。
【答案】,
【解析】由Fibonacci 的计算方法可知。
7. 流f 为可行流必须满足_____条件和_____条件。
【答案】容量限制条件和平衡条件
【解析】在运输网络的实际问题中可以看出,对于流有两个明显的要求:一是每个弧上的流量不能超过该弧 的最大通过能力(即弧的容量); 二是中间点的流量为零。因为对于每个点,运出这点的产品总量与运进这点的 产品总量之差,是这点的净输出量,简称为是这一点的流量; 由于中间点只起转运作用,所以中间点的流量必为 零。易而发点的净流出量和收点的净流入量必相等,也是这个方案的总输送量。
8. 在灵敏度分析时, 当LP 某系数发生变化使原最优单纯形表中的解为该LP 的一个正侧解,但不是可行解, 为求新的最优解, 处理办法是:_____。
【答案】对偶单纯形法
三、计算题
9. 下述论断正确与否:可行流f 的流量为零,即v (f )=0,当且仅当f 是零流。
【答案】论断错误。
流量
,但f 不是零流。
10.利用库恩一塔克条件求解以下问题:
(l )试写出库恩一塔克条件。
(2)a 满足什么条件以上问题有最优解? (3)分别求出相应的最优解和最优值。 【答案】(l )所求问题变形为
,只表明发点的净输出量为零,可能流出等于流入,
此时
故库恩一塔克条件为
(2)由约束条件可知,(3)
时,存在最优解
时,时,解得
由且
目标函数值
目标函数值为
,故
其余情况均不符合 故当当
时,最优解为
时,最优解为
11.已知图表示7个城市间拟建一条连接各个城市的通信线路,各边的权数表示两个城市之间的修建 费用,求连接各城市通信线路最小修建费用方案。
图
【答案】最优方案为:
可使修建费用为最少。