2018年南开大学统计研究院432统计学[专业硕士]之概率论与数理统计教程考研核心题库
● 摘要
一、证明题
1. 对于组合数
(1)(2)(3)(4)(5)(6)
【答案】(1)等式两边用组合数公式展开即可得证. (2)因为
(3)因为
(4)因为
所以
(5)设计如下一个抽样模型:一批产品共有a+b个,其中a 个是不合格品,b 个是合格品,从中随机取出n 个,
则事件=“取出的n 个产品中有k 个不合格品”的概率为
由诸互不相容,且
得
把分母移至另一侧即得结论.
第 2 页,共 39 页
,证明:
;
注:还有另一种证法:下述等式两端分别展开
可得
比较上式两端的系数即可得
(6)在(5)中令
,则得
再利用(1)的结果即可得证.
2. 证明:若
则对
有
并由此写出
与
其
中
【答案】由t 变量的结构知,t 变量可表示
为
且U 与V 独立,从而有
由于
将两者代回可知,在
时,若r 为奇数,则
若r 为偶数,则
证明完成. 进一步,当当
3. 设随机变量
【答案】
第 3 页,共 39 页
时,(此时要求(此时要求
否则均值不存在), 否则方差不存在).
时,
,试证明:
4. 证明:对正态分布
,若只有一个观测值,则的最大似然估计不存在.
【答案】在只有一个观测值场合,对数似然函数为
该函数在
时趋于,这说明该函数没有最大值,或者说极大值无法实现,从而的最大
似然估计不存在.
5. 设总体概率函数是对
的任一估计
令
人们只需要考虑基于充分统计量的估计.
【答案】我们将均方误差作如下分解
注意到
,这说明
于是
因而
.
6. 设连续随机变量X 的密度函数为P(x),试证:P(x)关于原点对称的充要条件是它的特征函数是实的偶函数.
【答案】记X 的特征函数为为
这表明X 与从而X 与即数,
由于
的特征函数为
证明
则所以
也服从
从而
第 4 页,共 39 页
是其样本,,证明
:
是的充分统计量,则
. 这说明,在均方误差准则下,
先证充分性. 若是实的偶函数,则又因
有相同的特征函数,
有相同的密度函数,而X 的密度函数为
则X 与
所以得
有相同的特征函
关于原点是对称的.
有相同的密度函数,所以X 与
故
再证必要性,若
是实的偶函数.
7. 设随机变量
【答案】若随机变量