2017年山东科技大学电气与自动化工程学院843信号与系统考研仿真模拟题
● 摘要
一、选择题
1. 设
A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A
【解析】因为A ,B 都是实对称阵,且B 有4个特征值
又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵
其中
故A 〜B. 再由
是正交阵,知T 也是正交阵,从而有
且由①式得
则A 与B ( ).
使
因此A 与B 合同.
2. 设向量组线性无关,则下列向量组中,线性无关的是( )
【答案】C 【解析】方法1:令
则有
由
线性无关知,
该方程组只有零解
从而
线性无关.
方法2:对向量组C ,由于
线性无关,且
因为 3. 设
所以向量组
是非齐次线性方程组
的两个不同解,
线性无关. 是
的基础解系,
为任意常数,
则Ax=b的通解为( )•
【答案】B 【解析】因为中
不一定线性无关. 而
由于故 4. 设
A. 若B. 若C. 若D. 若【答案】A 【解析】因为当否则有
由上述知因此
线性相关,所以线性相关,故选A.
于是
线性无关时,若秩
线性相关. 由此可否定C ,D. 又由
则
线性无关,
是
因此
线性无关,且都是
知
的解. 是
的特解,因此选B.
所以
因此
不是
的特解,从而否定A , C.但D
的基础解系. 又由均为n 维列向量,A 是线性相关,则线性相关,则线性无关,则线性无关,则
矩阵,下列选项正确的是( ). 线性相关. 线性无关. 线性相关. 线性无关.
5. 设n (n ≥3)阶矩阵
若矩阵A 的秩为n-1, 则a 必为( ). A.1 B. C.-1 D.
故
但当a=l时,
【答案】B 【解析】
二、分析计算题
6. 设A 、B 均是正定阵,证明:
(1)方程(2)方程
的根均大于0; 的所有根等于
【答案】(1)因为A 、B 正定,所以E 可逆阵P ,使
又因为B 正定而
所以即(2)
的根为因为
的相
且全大于0.
所以
的所有根均等于1,
正定,所以
由(1)知,
相关内容
相关标签