当前位置:问答库>考研试题

2017年太原科技大学经济与管理学院836运筹学考研题库

  摘要

一、填空题

1. 当极大化线性规划模型达到最优时。某非基变量x j 的检验数为马. 当价格系数为c j 的变化量为△c j 时,原 线性规划问题最优解保持不变的条件是_____。

【答案】

,极大化

【解析】x j 为非基变量,其价格系数变化△c j 后,其检验数变为

2. 决策问题的三个基本要素是:_____和_____。

【答案】策略、事件、事件的结果

3. 流f 为可行流必须满足_____条件和_____条件。

【答案】容量限制条件和平衡条件

【解析】在运输网络的实际问题中可以看出,对于流有两个明显的要求:一是每个弧上的流量不能超过该弧 的最大通过能力(即弧的容量); 二是中间点的流量为零。因为对于每个点,运出这点的产品总量与运进这点的 产品总量之差,是这点的净输出量,简称为是这一点的流量; 由于中间点只起转运作用,所以中间点的流量必为 零。易而发点的净流出量和收点的净流入量必相等,也是这个方案的总输送量。

4. 若x 为某极大化线性规划问题的一个基可行解,

用非基变量表达其目标函数的形式为

则X 为该LP 最优解的条件是:_____。

【答案】

【解析】求极大化问题,则当所有非基变量的检验数均为非正时,即得最优解。线性规划最优时要求非基变 量检验数小于等于0,所以

二、选择题

5. 单纯形法中,关于松弛变量和人工变量,以下说法正确的是( )。

A. 在最后的解中,松弛变量必须为0,人工变量不必为0 B. 在最后的解中,松弛变量不必为0,人工变量必须为0 C. 在最后的解中,松弛变量和人工变量都必须为0 D. 在最后的解中,松弛变量和人工变量都不必为0 【答案】B

【解析】松弛变量是在约束不等式号的左端加入的,在最后的解中,其值可以不必为0; 人工变量是在原约束条件为等式的情况下加入的,只有基变量中不再含有非零的人工变量时,原问题

才有解,所有最后的解中人工变量必须为0。

6. 关于对偶问题,下列叙述错误的有( )

A. 根据对偶问题的性质, 当原问题为无解时, 其对偶问题无可行解; 反之当对偶问题无可行解, 其原问题具有无界解。

B. 若线性规划的原问题有多重最优解,则其对偶问题也一定具有多重最优解。

C. 己知y 飞为线性规划的对偶问题的最优解,若y*j>0,说明在最优生产计划中第j 种资源己完全耗尽

D. 若某种资源的影子价格等于k ,在其他条件不变的情况下,当种资源增加5个单位时,相应的目标函 数只讲增大sk

【答案】A

【解析】当原问题(对偶问题)无可行解时,对偶问题(原问题)或具有无界解或无可行解。

7. 对于动态规划,下列说法正确的有( )

A. 在动态规划模型中,问题的阶段数等于问题中的子问题的数目 B. 动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性 C. 对一个动态规划问题,应用顺推成逆推解法可能会得出不同的最优解

D. 假如一个线性规划问题含有8个变量和6个约束,则用动态规划方法求解时将划分为6个阶段,每个阶 段的状态将有一个8维的向量组成

【答案】AB

【解析】对于一个动态规划问题,不论是采用顺推法还是逆推法,只能得到一个唯一的解; 假如一个线性规 划问题含有8个变量和6个约束,则用动态规划方法求解时将按照变量的个数划分为8个阶段,每个阶段的状态 将有一个6维的向量组成。

8. 在求解整数规划问题时,不可能出现的是( )。

A. 唯一最优解 B. 无可行解 C. 多重最优解 D. 无穷多最优解 【答案】D

【解析】整数规划的可行解的个数是有限的,所以整数规划中不可能出现无穷多最优解。

三、证明题

9. 设

是正定二次函数

。试证:若

关于Q 共扼

分别

在两条平行

于方向P 的直线上的极小点,则方向p 与方向

【答案】因为

分别是f (x )在两条平行于方向P 的直线上的极小点,

则有从而又由于则有

10.假设线性规划问题为:

其中

,秩

运用单纯形算法求得的最优基可行解时,所有的非基变量检验数全都<0,试证明这时所得到的最优解必定 是线性规划问题(l )的准最优解。

【答案】一般情况下,经过迭代后解变为

再将上式代入目标函数式,整理后得到

令于是

再令则

时,此时的解就为最优解。

这样当所有非基变量的检验数即

11.证明:r (x )二x12+x22是严格凸函数。

【答案】首先求导为(2x l ,2x 2:) 求海塞矩阵

为正定矩阵,所以f (x )为严格凸函数

12.己知九个人v 1,v 2,…,v 9中v 1和两个人握过手,v 2和v 3各和四个人握过手,v 4,v 5,v 6,v 7各和五个人握过手,v 8,v 9各和六个人握过手,证明这九个人一定可以找出三人互相握过手。

【答案】该问题可表述为一个包含9个点(每个人代表一个点)的图的问题。依题意知 d (v l )=2,d (v 2)=d(v 3)=4,d (v 4)=d(v 5)=d(v 6)=d(v 7)=5,d (v 8)=d(v 9)=6