2017年太原科技大学工业工程系893运筹学考研强化模拟题
● 摘要
一、填空题
1. 若x 为某极大化线性规划问题的一个基可行解,
用非基变量表达其目标函数的形式为
则X 为该LP 最优解的条件是:_____。
【答案】
。
【解析】求极大化问题,则当所有非基变量的检验数均为非正时,即得最优解。线性规划最优时要求非基变 量检验数小于等于0,所以
2. 流f 为可行流必须满足_____条件和_____条件。
【答案】容量限制条件和平衡条件
【解析】在运输网络的实际问题中可以看出,对于流有两个明显的要求:一是每个弧上的流量不能超过该弧 的最大通过能力(即弧的容量); 二是中间点的流量为零。因为对于每个点,运出这点的产品总量与运进这点的 产品总量之差,是这点的净输出量,简称为是这一点的流量; 由于中间点只起转运作用,所以中间点的流量必为 零。易而发点的净流出量和收点的净流入量必相等,也是这个方案的总输送量。
3. 若P (k )是f (x )在x (K )处的下降方向,则满足_____。
【答案】均有
【解析】若存在实数
,使对于任意的
,就称方向
)为
均有下式成立:
点的一个下降方向。
4. 对于线性规划问题:MaxZ=CX.AX≦b.X ≧0,若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量, 且为该LP 的一个可行基,则对应于基B 的基可行解为:_____,该基可行解为最优解的条件是:_____。
【答案】
,对于一切
有
。
【解析】若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量,
此时令非基变量
, 这时变量的个数等于线性方程组的个数,用高斯消去法,可求得对应
于基B 的基可行解
为
。由最优解的判别定理,若对于一
切
, 则所求得的基可 行解为最优解。
二、选择题
5. 企业进行库存管理与控制的目标不包括以下( )。
A. 保证生产或销售的需要 B. 降低库存占用资金
C. 降低花在存储方面的管理费用 D. 较低的货损 【答案】D
【解析】货损与库存管理与控制无关,与采购的运输等其他环节有关。
6. 单纯形法求解最大化线性规划问题,如果存在“左端≥右端常数”的约束条件,对此约束条件应引入( )。
A. 可控变量 B. 环境变量 C. 人工变量 D. 松弛变量 【答案】D
【解析】约束方程为“≥”不等式,则可在“≥”不等式左端减去一个非负剩余变量(也可称松弛变量)。
7. 用线性规划制定某一企业的生产计划问题,两种资源的影子价格分别为y 甲=5,y 乙=8,说明这两种资源在该企业中的稀缺程度为:( )。
A. 甲比乙更稀缺 B. 甲和乙同样稀缺 C. 乙比甲更稀缺 D. 甲和乙都不稀缺 【答案】C
【解析】影子价格是对系统内部资源稀缺程度的一种客观评价,某种资源的影子价格越高,说明该资源在系统内越稀缺,增加该资源的供应量对系统目标函数值的贡献也越大。
8. 单纯形法中,关于松弛变量和人工变量,以下说法正确的是( )。
A. 在最后的解中,松弛变量必须为0,人工变量不必为0 B. 在最后的解中,松弛变量不必为0,人工变量必须为0 C. 在最后的解中,松弛变量和人工变量都必须为0 D. 在最后的解中,松弛变量和人工变量都不必为0 【答案】B
【解析】松弛变量是在约束不等式号的左端加入的,在最后的解中,其值可以不必为0; 人工变量是在原约束条件为等式的情况下加入的,只有基变量中不再含有非零的人工变量时,原问题
才有解,所有最后的解中人工变量必须为0。
三、证明题
9. 假设线性规划问题为:
其中
,秩
运用单纯形算法求得的最优基可行解时,所有的非基变量检验数全都<0,试证明这时所得到的最优解必定 是线性规划问题(l )的准最优解。
【答案】一般情况下,经过迭代后解变为
再将上式代入目标函数式,整理后得到
令于是
再令则
时,此时的解就为最优解。
这样当所有非基变量的检验数即
10.设线性规划问题1是
(
)是其对偶问题的最优解。
又设线性规划问题2是