2018年北京市培养单位理化技术研究所811量子力学考研核心题库
● 摘要
一、填空题
1. —粒子的波函数为【答案】
写出粒子位于
间的几率的表达式_____。
2. 对氢原子,不考虑电子的自旋,能级的简并度为_____,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为_____。 【答案】
3. 一粒子的波函数【答案】
则粒子位于间的几率为_____。
4. 二粒子体系,仅限于角动量涉及的自由度,有两种表象,分别为_____和_____; 它们的力学量完全集分别是_____和_____; 在两种表象中,各力学量共同的本征态分别是_____和_____。 【答案】耦合表象;非耦合表象
;
5. 称_____等固有性质_____的微观粒子为全同粒子。 【答案】质量;电荷;自旋;完全相同 6 用球坐标表示,.粒子波函数表为【答案】
写出粒子在球壳
中被测到的几率_____。
二、选择题
7. 已知体系的哈密顿算符为
下列算符
与对易的有_____。
【答案】
8. 如果算符表示力学量应的_____。
【答案】确定值;本征值
第 2 页,共 45 页
那么当体系处于的本征态时,力学量F 有_____。这个值就是相
9. 中心力场中,算符的式子是( ) A. B. C. D.
的共同征函数为
则关于这两个算符的本征值方程正确
【答案】C
10.角动量算符满足的对易关系为【答案】
_____,坐标和动量的对易关系是_____。
11.光子和电子的波长都为5.0埃,光子的动量与电子的动量之比是多少?( ) A.1 B. C. D. 【答案】A
【解析】由德布罗意波长公式
12.如两力学量算符【答案】0
有共同本征函数完全系,则它们满足对易关系为
_____。
波长相同则二者动量大小必定相同,因此答案选A.
三、证明题
13.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符
证明它是厄米算符,并且求解其本征方程.
因为存在
数
(2)证:因为而(3)因为
所以
即正交
具有周期性,
所以
即本征值为实
【答案】(1)证:对于厄米算符
第 3 页,共 45 页
而
所以
设本征方程为
其中为本征值,上式可改写为
易解出即为厄米算符。
C 为积分常数,可由归一化条
件决定. 又因为波函数满足周期性边界条件的限制,
由此可得数记为
即为其本征函数. 相应的本征方程为
14.粒子自旋处于
的本征态
【答案】易知但是
(常数),
同理,可得
因此:
所以有:
试证明
的不确定关系
:
即角动量z 分量的本征值为
是量子化的,相应本征函
再利用归一化条件可得
四、计算题
15.设粒子从
入射,进入一维阶跃势场:当x <0时,如果粒子能量
(1)写出波动方程式并求解; (2)求透射系数;
(3)求反射系数并求与透射系数之和. 【答案】(1)粒子波动方程为
令
则方程的解为
第 4 页,共 45 页
而当x >0时
,
试
相关内容
相关标签