2017年湖北师范大学概率论与数理统计(同等学力加试)复试实战预测五套卷
● 摘要
一、计算题
1. 求以下分布的中位数:
(1)区间(a ,b )上的均匀分布; (2)正态分有(3)对数正态分布【答案】(1)从1(2)记
(3)
记则由(2)知
由此得
试求:
即
2. 从1,2,3,4,5五个数中任取三个,按大小排列记为
(1)X 的分布函数; (2)P (X<2)及P (X>4). 【答案】(1)因为X 的分布列为
所以X 的分布函数为
由
令X=Iny,
则
中解得
可得又记
为Y 的中位数.
为X 的中位数,
(2)
3. 自由度为2的分布的密度函数为
【答案】此分布的分布函数F (x )为:当
。试求出其分布函数及分位数
时,
当
所此分布的p 分位
数
4. 设
【答案】
第 2 页,共 28 页
I 时,
满足
:从中解
得
。由此
得
求
若令可得
再令可得
当k 为偶数时,当k 为奇数时,
5. 有两台机器生产同种金属部件,分别在两台机器所生产的部件中各取一容量为m=14和n=12的样本,测得部件质量的样本方差分别为平
下检验假设
若
,此处,检验
,设两样本相互独立,试在显著性水
【答案】这是一个关于两正态总体方差的单侧检验问题,
由所给条件算得取显著性水平
可求得临界值为
,拒绝域为此值,如,在Matkb 中输入finv (0.95.13.11)即可给此值)统计量未落入拒绝域中,因此接受原假设.
6. 设连续随机变量X 的分布函数为
试求
(1)系数A ;
(2)X 落在区间(0.3,0.7)内的概率; (3)X 的密度函数.
【答案】(1)由F (x )的连续性,有(2)
(3)X 的密度函数(如图)为
由此解得A=l.
(可用线性插值法或用统计软件求出
图
第 3 页,共 28 页
7. 某建筑工地每天发生事故数的现场记录如下:
表
1
试在显著性水平
下检验这批数据是否服从泊松分布.
【答案】本题与上题完全类似,仍为检验总体是否服从泊松分布的分布拟合检验问题. 由于有几类的观测个数偏少,为使用近似分布,需要把后面四类合并为一类. 于是我们把总体分成4类,在原假设下,每类出现的概率为:
未知参数采用最大似然估计得:
将代入可以估计出诸
于是可计算出检验核计量
表
2
如下表:
若
取查表
知故拒绝域
为由
于
故不拒绝原假设,在显著性水平为0.05下可以认为这批数据服从泊松分布.
此处检验的p 值为
8. 从n 个数1,2,…,n 中任取2个,问其中一个小于k (l 【答案】从n 个数中任取2个,共有当于将1,2, …,n 分成三组: 于是所求事件是从第1组中任取1个且从第3组中任取1个,这共有于是所求概率为 种等可能的取法. 而其中一个小于k 、另一个大于k 相 种取法. 二、证明题 第 4 页,共 28 页