2018年中国人民大学理学院物理系617量子力学考研强化五套模拟题
● 摘要
一、填空题
1. 对氢原子,不考虑电子的自旋,能级的简并度为_____,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为_____。
【答案】
2. 玻恩关于波函数统计解释的基本论点是_____。
【答案】物质的本源是粒子;波动性是指微观粒子处于某一物理量值的统计几率 3 用球坐标表示 ,.粒子波函数表为写出粒子在球壳中被测到的几率_____。【答案】
4. (1)自由粒子被限制在x 和x+1处两个不可穿透壁之间,按照经典物理. 如果没有给出其他资料,则粒子在 x 和x+1/3之间的概率是_____. A.025 B.033 C.011 D.067
(2)上题中,按照量子力学. 处于最低能态的粒子在x 和x+1/3之间被找到的概率是_____. A.019 B.072 C.033 D.050
【答案】(1)B
【解析】按照经典力学,粒子处于空间的概率密度为常数,故概率与体积成正比,
即所求概率为
(2)A
【解析】取x 为原点,则有波函数为所求概率即
5. —粒子的波函数为【答案】
6. 一粒子的波函数【答案】
写出粒子位于间的几率的表达式_____。
则粒子位于间的几率为_____。
二、计算题
7. —个电子在沿正Z 方向的均匀磁场B 中运动(只考虑自旋),在t=0时测量到电子自旋沿正X 方向,求在t >0时的自旋波函数以及的平均值. 【答案】
在
表象下,
由
可以解得
:
其中
时态矢为:
分别为朝上和朝下时的波函数.
即t=0
时刻电子自选波函数
电子由于自旋产生的能量对应哈密顿量为:故
状态为的本征态,对应本征值为:
t >0时刻电子自旋波函数应为
写成矩阵形式,即
而
平均值为
8. 自旋为的一定域电子在均匀磁场子处 在
的本征态上,求t >0时测量
中运动,磁作用势为的可能取值及相应的几率。
设t=0时刻,电
【答案】的本征态矢与本征值为:
任意t 时的态矢为:
可能取值为
9. 考虑自旋为的系统。 (1)试在
表象中求算符
的本征值及归一化的本征态。其中
是角动量算符,
而4、5为实常数。
(2)假定此系统处于以上算符的一个本征态上,求测量得到结果为的概率。 【答案】(1)设设本征值为
有
则在
设
解得本征态为:
(2)在
表象中,
的本征态为
故发现
的概率为:
表象中
为归一化的本征态,
则由本征方程
对应几率为