当前位置:问答库>考研试题

2018年华南农业大学园艺学院314数学(农)之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1.

已知矩阵

可逆矩阵P ,使

若不相似则说明理由.

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是

由矩阵B 的特征多项式

得到矩阵B

的特征值也是

时,由秩

A 可以相似对角化.

有2个线性无关的解,

时矩阵A 有2个线性无关的特征向量,矩阵

时矩阵B 只有1个线性无

只有1个线性无关的解,即

关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.

2.

(1)计算行列式∣A ∣;

(2)当实数a 为何值时,

线性方程组【答案】

有无穷多解?并求其通解.

若要使得原线性方程组有无穷多解,

则有及得

此时,

原线性方程组增广矩阵为

进一步化为行最简形得

可知导出组的基础解系为

非齐次方程的特解为

故其通解为k 为任意常

数.

3.

已知矩阵可逆矩阵P ,使

若不相似则说明理由。

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是当

时,由秩

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

A 可以相似对角化,因此矩阵A 和B 不相似。

4.

已知

二次型的秩为

2.

求实数a 的值;

求正交变换x=Qy使得f 化为标准型. 【答案】

⑴由

可得

则矩阵

解得B 矩阵的特征值为

:当

时,

得对应的特征向量为

当时,

得对应的特征向量为

对于

解得对应的特征向量为

将单位转化为

. 令X=Qy,

二、计算题