当前位置:问答库>考研试题

2017年青岛科技大学数理学院860高等代数考研冲刺密押题

  摘要

一、选择题

1. 设A 为3阶矩阵,将A 的第2行加到第1行得8, 再将B 的第1列的一1倍加到第2列得C ,

A. B. C. D.

【答案】B

则( ).

【解析】由已知,有

于是

2. 设A 为3阶矩阵,将A 的第2列加到第1列得B ,再交换B 的第2行与第3行得单位矩阵

.

A. B. C. D.

【答案】D 【解析】由题设知所以

第 2 页,共 38 页

3. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).

A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C

【解析】解法1:题设P (1, 2)A=B,所以有

所以有

即A*右乘初等阵P (1,2)得-B*

解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此

分别为A ,B 的伴随矩阵,

4. 设

其中A 可逆,则A.

B.

C.

D. 【答案】C 【解析】因为 5.

设次型.

A. B. C. D. 【答案】D

第 3 页,共 38 页

=( ).

则当( )时,此时二次型为正定二

为任意实数

不等于0

为非正实数

不等于-1

【解析】方法1 用排除法令则

这时f (l ,1,1)=0,即f 不是正定的. 从而否定A ,B ,C. 方法2

所以当方法3 设

时,f 为正定二次型.

对应的矩阵为A ,则

A 的3个顺序主子式为

所以当方法4令

时,A 的3个顺序主子式都大于0,则,为正定二次型,故选(D ).

所以f 为正定的.

二、分析计算题

6. 求下列曲线的直角坐标方程:

(1)(2)

【答案】(1)把方程写成

(x , y )是由某代入上述方程组算出的解,当且仅当这对(x , y)使上述联立方程组有某公共根t 0, 也当 且仅当x , y满足下列结式

第 4 页,共 38 页