当前位置:问答库>考研试题

2018年兰州大学生命科学学院314数学(农)之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1.

已知通解是

.

, 证明

【答案】

由解的结构知

是4阶矩阵,其中

是齐次方程组

故秩

是4维列向量. 若齐次方程组Ax=0的的基础解系.

又由

可知综上可知

2.

已知矩阵可逆矩阵P ,使

即故

都是

的解.

线性无关.

得的基础解系.

那么

若不相似则说明理由。

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是当

时,由秩

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

A 可以相似对角化,因此矩阵A 和B 不相似。

3. 设B

(I

)证明(II

)证明(III

)若【答案】⑴

矩阵

逆其中E 是n 阶单位矩阵.

且A 可对角化,

求行列式

(II )

(Ⅲ)设

则由

或1. 又存在可逆矩阵p ,

使或1.

4.

(1)计算行列式∣A ∣;

(2)当实数a 为何值时,

线性方程组【答案】

有无穷多解?并求其通解.

专注考研专业课

13年,提供海量考研优质文档!

若要使得原线性方程组有无穷多解,

则有

此时

,原线性方程组增广矩阵为

进一步化为行最简形得

可知导出组的基础解系为非齐次方程的特解为故其通解为k 为任意常

数.

二、计算题

5. 计算

【答案】记则原式=又