当前位置:问答库>考研试题

2018年兰州交通大学测绘与地理信息学院616数学基础与计算几何之工程数学—线性代数考研核心题库

  摘要

一、解答题

1.

设三维列向量组

(Ⅱ)

【答案】(Ⅰ)由于4

个三维列向量全为0

的数

又向量组记

和向量组向量

线性表示.

所有非零解,即可得所有非零

的系数矩阵A 施行初等行变换化为行最简形:

使得

线性无关;

向量组

构成的向量组一定线性相关,故存在一组不即,

线性无关,故

不全为0

,

即存在非零列向量

不全为0.

使得

可同时由向量组

线性无关,

列向量组

线性无关.

和向量组

线性表示;

(Ⅰ

)证明存在非零列向量

使得

可同时由向量组

时,

求出所有非零列向量

(Ⅱ)易知,

求出齐次线性方程组下面将方程组

于是,方程组的基础解系可选为

_意非零常数.

因此,

所有非零列向量

2. 已知A

矩阵,齐次方程组

的基础解系是

与由

有非零公共解,求a 的值并求公共解.

第 2 页,共 39 页

所有非零解

_

t 为任

又知齐

次方程组Bx=0

的基础解系是

(Ⅰ)求矩阵A ;

(Ⅱ

)如果齐次线性方程组

【答案】(1

)记

贝腕阵的列向量(即矩阵

A

的行向量)是齐次线性方程组的解.

作初等行变换,有

得到

所以矩阵

的基础解系为

(Ⅱ)设齐次线性方程组Ajc=0与Sx=0

的非零公共解为由

线性表出,

故可设

作初等行变换,有

于是

则既可由

线性表出,也可

不全为

当a=0时,

解出

因此,Ax=0与Bx=0

的公共解为

3. 设二次

(Ⅰ)用正交变换化二次型(Ⅱ

)求【答案】

(Ⅰ)由

知,矩阵B 的列向量是齐次方程组Ax=0的解向量.

为标准形,并写出所用正交变换;

其中t 为任意常数.

矩阵A 满足AB=0, 其

值(至少是二重)

根据

值是0, 0, 6.

的特征向量为

则是

的线性无关的特征向量.

由此可知

,是矩阵A 的特征

故知矩阵A

有特征值因此,矩阵A 的特征

那么由实对称矩阵不同特征值的特征向量相互正交,

解出

第 3 页,共 39 页

对正交化,

令则

再对,单位化,得

那么经坐标变换

二次型化为标准形(Ⅱ)因为

所以由

进而

于是

4. 设n 维列向

【答案】

线性无关,其中S 是大于2的偶数. 若矩

试求非齐次线性方程组

的通解.

方程组①化为:

整理得

,由

线性无关,得

显然①与②同解.

下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)

第 4 页,共 39 页