当前位置:问答库>考研试题

2018年安徽医科大学第四临床医学院(第四附属医院)306西医综合之生物化学考研基础五套测试题

  摘要

一、名词解释

1. 稀有密码子(rare codon)。

【答案】稀有密码子是指不同生物体对编码同一种氨基酸的不同密码子(同义密码子)的使用频率比较低的密码 子。

2. 内含子(intron )。

【答案】内含子(intron )是指外显子之间的非编码序列。大多数真核生物基因的编码序列中间插有非编码序列, 编码序列称为外显子(exon )。

3. 分段盐析。

【答案】分段盐析是指利用不同蛋白质盐析时所需盐浓度不同,逐渐増加中性盐(常用硫酸铵)的浓度,从而使不同蛋白质先后析出的方法。例如血清中加入50%

析出,加入100%

4. 亲和层析。 可使清蛋白析出。 可使球蛋白

【答案】亲和层析是指利用蛋白质分子对其配体分子特有的识别和结合能力建立起来的分离纯化技术。把待纯化蛋白质的特异配体共价连接到载体上,将此载体装入层析柱,对蛋白质混合物进行柱层析时,待纯化的蛋白质与 配体特异结合,吸附在层析柱上,而其他的蛋白质不能被吸附,通过洗脱可以除去,最后用含游离配体的溶液或 用改变了 pH 或离子强度的溶液将与配体结合的蛋白质洗脱下来

5. 稀有氨基酸。

【答案】稀有氨基酸是组成蛋白质中的20种常见氨基酸以外的其他蛋白质氨基酸,它们是正常氨基酸的衍生物,如5-轻赖氨酸。

6. 波尔效应(Bohr effect)。

【答案】

波尔效应是指增加

进血红蛋白释放氧。反之高浓度的

分压,

提高或者增加的浓度,能够提高血红蛋白亚基的协同效应,

值,也能增加亚基协同效应,促

分压的变化,对血红蛋白结的分压,

都将促进脱氧血红蛋白分子释放

浓度或

值及降低血红蛋白对氧的亲和力。并且发现増加

离子浓度或降低这些相互有关的现象。波尔效应主要是描述

合氧的影响,它具有重要的生理意义。

7. 高能化合物。

【答案】高能化合物是指含有高能键的化合物。生物化学中的高能键是指具有高的磷酸基团转移势能或水解时释放较多的自由能的磷酸酐键或硫酯键,这里的高能键是不稳定的。

8. 活性蛋氨酸。

【答案】活性蛋氨酸又称S-腺苷甲硫氨酸(SAM ),是一种活性甲基供体。是ATP 与蛋氨酸在酶的催化下生成的。

二、问答题

9. 外源基因导入动物细胞有哪些常用方法?

【答案】常用的方法有:(1)磷酸钙共沉淀法,用沉淀磷酸离子和DNA , 沉积在细胞质膜上的DNA 被细胞吸收,可能是通过吞嗤作用;(2) DEAD 葡聚糖(DE-AE-dextron )或聚阳离子(polycation )法,它能结合DNA 并促使细胞吸收;(3)脂质体(liposome )法,利用类脂经超声波、机械搅拌等处理,形成双脂层小囊泡, 将DNA 溶液包裹在内,它通过与细胞质膜融合而使DNA 进入细胞;(4)脂质转染法,用人工合成的阳离子类 脂与DNA 形成复合性,借助类脂穿过质膜而将DNA 导入细胞内;(5)电穿孔法,在脉冲高压电场作用下质膜 瞬间被击穿,DNA 得以进入细胞,细胞膜随即修复正常;(6)显微注射法,对哺乳动物受精卵等较大的细胞,导入外源DNA 可以用显微注射法,即在显微镜下,

用极细的玻璃注射器针头

枪射击动物的表皮、肌肉和 乳房等获得成功的例子也有报道。

在以上诸方法中,磷酸钙共沉淀法成本低、操作方便,但效率低;脂质转染法和电穿孑1法,前者需要昂贵的试剂,后者需要特殊的仪器,但效率高,现在较常用。显微注射法效率极高,还可直接将DNA 送入核内,但 需要昂贵仪器,且技术复杂不易掌握。

10.大肠杆菌既可以通过光复活系统,也可以通过核苷酸切除修复系统来修复由紫外线照射产生的嘧啶二聚体,如何通过实验区分这两种机制?

【答案】切除修复需要将嘧啶二聚体切除掉,换上正常的胸苷酸,而光复活机制是通过光复

活酶直接破坏嘧啶二聚体的环丁烷环而修复嘧啶二聚体。因此可以用标记的胸苷追踪修复过程,如果出现在修复后的DNA 分子上,则修复的方式是切除修复,否则就是光复活机制。

11.铁硫蛋白和细胞色素传递电子的方式是否相同? 为什么?

【答案】铁硫蛋白和细胞色素传递电子的方式是相同的,

都是通过铁的价变即的互变来进行电子的传递。它们的差别在于细胞色素的铁是血红素铁,铁与血红素分子紧密结合;而铁硫蛋白的铁是非血红素铁,与蛋白质中Cys 的硫和无机磷原子结合在一起,形成一个铁硫中心。

插入细胞内并注入DNA 溶液;(7)基因枪(genegun )法,在动物转基因中使用相对较少,用基因

12.核糖核苷酸如何转变为脱氧核糖核苷酸?

【答案】(1)腺嘌呤、鸟嘌呤和胞嘧啶核糖核苷酸经还原,将核糖第二位碳原子的氧脱去,即成为相应的脱氧核糖核苷酸。

(2)胸腺嘧啶脱氧核糖核苷酸:先由尿嘧啶核糖核苷酸还原形成尿嘧啶脱氧核糖核苷酸,然后尿嘧啶脱氧核糖核苷酸再经甲基化转变成胸腺嘧啶脱氧核糖核苷酸。

在大多数生物体,还原反应发生在核苷二磷酸水平上。ADP 、GDP 、CDP 和UDP 都可以在核苷酸还原酶系的作用下还原生成相应的脱氧核苷二磷酸dADP 、dGDP 、dCDP 和dUDP 。dTMP 是由dUMP 甲基化形成的。

13.当胞浆中脂肪酸合成量盛时,线粒体中脂肪酸氧化就会停止,为什么?

【答案】

主要是因为脂肪酸合成产生出的丙二酸单酰

用,

这样长链的脂酰

的含量就会很多,

脂酰被阻断在胞浆中,所以可以抑制肉碱脂肪酰转移酶的作氧化就不能进行。

和活就不能转入到线粒体中。当脂肪酸的合成旺盛时,

胞浆中的丙二酸卓酰脂肪酸分解代谢与合成代谢是协同受到调控的。脂肪酸分解代谢的调控主要是由线粒体控制脂肪酸进入粒体内。脂肪酸进入细胞后,在细胞溶胶中,在硫激酶的催化下先被乙酰化,

形成脂酰,脂酰

进入线粒体的调节是以脂酰

的抑制。

就会处于一个较高的水平,这样就可以从线粒体

不能进入线粒体为依据,即它必须先转化为脂酰肉碱,才可以穿越线粒体的内膜,这个反应是在肉碱脂酰转移的催化下完成的,

而肉碱脂酰转移

强烈地受到丙二酸单酰而丙二酸单酰样当胞浆中脂肪酸合成旺盛时,

丙二酸单酰为脂肪酸合成产生的第一个中间体,在脂肪酸合成中担着重要的角色,这

内膜的运送系统上关闭脂肪酸的氧化,如此。可以防止耗能性的无效循环。

14.线粒体基质中形成的乙酰CoA 是如何进入细胞质中参加脂肪酸的合成的?

【答案】线粒体基质内形成的乙酰CoA 不能直接通过线粒体膜进入细胞质,而需要其他物质携带,它可以通过柠檬酸穿梭透过线粒体膜,而进入细胞质。

在线粒体中,乙酰CoA 与草酰乙酸经TCA 形成柠檬酸,柠檬酸透过线粒体膜到达细胞质后被柠檬酸裂解酶作用生成乙酰CoA 和草酰乙酸,乙酰CoA 则参与脂肪酸的合成,而草酰乙酸经过苹果酸脱氢酶和苹果酸酶作用生成丙酮酸,进入线粒体参与TCA 形成草酰乙酸,再进行下一轮的乙酰CoA 转运过程。

15.原核生物的mRNA 和真核生物的mRNA 在结构上有何主要区别?

【答案】(1)真核生物mRNA

含有

的。

(2)真核生物mRNA 是单顺反子,原核生物mRNA 往往是多顺反子。

(3)真核生物mRNA 的起始密码子AUG 之前的前导序列中有一段嘧啶核苷酸,与18SrRNA 的一段嘌呤核苷酸互补配对;而原核生物mRNA 起始密码子AUG 之前存在一段嘌呤核苷酸,是

帽子结构和结构,原核生物的mRNA 是没有

相关内容

相关标签