当前位置:问答库>考研试题

2018年华东理工大学理学院818量子力学考研基础五套测试题

  摘要

一、证明题

1. 试证明,表象经么正变换后,不改变算符本征值。 【答案】设可得:

(其中

为幺正变换,则:

可见,本征值不变。

2. 证明么正变换不改变算符的本征值。

【答案】设在某一表象下,一个幺正变换的矩阵表示为S 。对任意算符,其在该表象下的矩阵表示为F , 则对其进行么正变换后的矩阵表示为:

由于相似变换不改变矩阵本征值,故

与F 本征值相同,因此么正变换不改变算符本征值。

二、计算题

3. 设基态氢原子处于弱电场中,微扰哈密顿量为(1)求很长时间后已知,基态

电子跃迁到激发态的概率.

(2)基态电子跃迁到下列哪个激发态的概率等于零? 简述理由

.

【答案】(1)根据跃迁几率公式

其中

可知,必须先求得

终态量子数必须是

第 2 页,共 42 页

其中 T 为常数。

已知,a 基态其中为玻耳半径.

根据题意知,氢原子在t>0时所受微扰为:氢原子初态波函数为:根据选择定则

记由初态

到末态

的跃迁矩阵元为

将代入跃迁几率公式

(2)基态电子跃迁到

4. 设氢原子处于状态

求氢原子能量、角动量平方及角动量z 分量的可能值,这些可能值出现的几率和这些力学量的平均值.

【答案】氢原子的定态能量为由氢原子所处的态函数

所以氢原子能量的取值为角动量平方的取值为角动量z 分量的取值为:

几率1/4,

几率3/4,

其平均值

第 3 页,共 42 页

的几率均为0, 因为不符合跃迁的选择定则

几率为1,能量的平均值为

几率为1,其平均值为

5. 设限制在边长为L 的立方体中的单粒子的本征能量与本征波函数是已知的,其中基态是非简并的,而第一激发态与第二激发态都是3重简并的. 具体而言,基态的本征能量与轨道波函数分别为

第1激发态的本征能量与轨道波函数分别为

第2激发态的本征能量与轨道波函数分别为且前三个单粒子能级是等间隔的.

设由4个上述单粒子构成的全同粒子体系,限制在边长为L 的立方体中. 计算体系的较低的2个本征能量及相应的简并度.

【答案】题中并未给出粒子是费米子还是玻色子,故分两种情况讨论: 由题意可知(1)粒子为费米子

此时粒子应该遵守泡利不相容原理,每个波函数最多容下两个粒子. 体系最低能量:对应波函数有

其简并度为6. 体系第一激发态能量(2)粒子为玻色子

此时粒子不受泡利不相容原理约束, 体系最低能量:体系第一激发态能量为:

6. (1)求算符【答案】⑴

即算符⑵

不对易.

第 4 页,共 42 页

其简并度为:3×3=9.

其简并度为1.

其简并度为3. 的对易关系. (2)证明

其中