当前位置:问答库>考研试题

2018年大连理工大学工商管理学院806量子力学考研强化五套模拟题

  摘要

一、填空题

1. 在量子力学原理中. 体系的量子态用希尔伯特空间中的_____来描述. 而力学量用_____描述. 力学量算符必为_____算符,以保证其_____为实数.

【答案】函数矢量;张量(一般是二阶张量,即矩阵);厄米;本征值

【解析】希尔伯特空间中的函数矢量对应体系的量子态,力学量对应张量,一般情况下力学量对应二阶张量,也就是矩阵. 力学量算符必须保证其厄米性,否则将导致测量值即其本征值不是实数,这显然不符合事实.

2. 二粒子体系,仅限于角动量涉及的自由度,有两种表象,分别为_____和_____; 它们的力学量完全集分别是_____和_____; 在两种表象中,各力学量共同的本征态分别是_____和_____。 【答案】耦合表象;非耦合表象

3. 对氢原子,不考虑电子的自旋,能级的简并度为_____,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为_____。

【答案】

4. 描述微观粒子运动状态的量子数有_____; 具有相同n 的量子态,最多可以容纳的电子数为_____个。 【答案】

二、计算题

5. —质量为m 的粒子限制在宽度为2L 的无限深势阱当中运动. 势阱为现在势阱的底部加一微扰态的能量。

【答案】未施加微扰前,粒子本征波函数以及相应本证能量为

显然为非简并态。

微扰为故

第 2 页,共 24 页

其中试利用一阶微扰理论计算第n 激发

故激发态的一级近似能量为

6. 考虑一维双势阱:

(1)推导在x=a处波函数的连接条件. (2)对于偶宇称的解,即征值的数目.

【答案】(1)薛定谔方程可表示为

OT 为粒子质量,

为方程的奇点,在x=a

点处

对上述方程积分

得出

(2)由题意知当x >a 时

,当-a <x <a 时,

其中

其中

考虑到束缚态,因此解为

考虑到偶宇称,因此解为

结合x=a处的边界条件和此处的波函数连续条件,可得

化去A , C后可得,

此即能量本征值所需要满足的方程.

不存在,表现为

不连续。

求束缚态能量本征值满足的方程,并用图解法说明本

其中

第 3 页,共 24 页

所以满足此方程的本征值只有一个.

7. 两个无相互作用的粒子(质量均为m )置于一维无限深方势阱(函数。

(1)两个自旋为的可区分粒子。 (2)两个自旋为的全同粒子。

【答案】(1)对于自旋的二个可区分粒子,波函数不必对称化。 基态:总能量为

而波函数为

有4重简并。

)中。对下列两种情况

写出:两 粒子体系可具有的两个最低总能量值,相应的简并度以及上述能级对应的所有二粒子波

第一激发态:总能量为其波函数为有8重简并。

(2

)自旋非简并。

的二个全同粒子,总波函数必须是反对称的。故基态:

总能量为

波函数为

第一激发态:总能量为波函数为4重简并。其中,

代表二粒子自旋单态

代表自旋三重态。

8. 一自由的三维转子的Hamiltonian

为(1)求能谱与相应的简并度;

第 4 页,共 24 页

式中,是轨道角动量算符,1是转子的转动惯量。