当前位置:问答库>考研试题

2017年厦门大学能源学院820量子力学考研仿真模拟题

  摘要

一、简答题

1. 厄米算符的本征值与本征矢

分别具有什么性质?

【答案】本征值为实数,本征矢为正交、归一和完备的函数系。

2. 分别说明什么样的状态是束缚态、简并态与负宇称态?

【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

3. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。

【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。

(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。

(3)将体系的状态波函数

用算符的本征函数展开:

则在

盔中测量力学量得到结果为

(4)体系的状态波函数满足薛定谔方程

其中是体系的哈密顿算符。

的几率是

得到结果在

范围内的几率是

得出。表示力学量的算符组成完全系的本征函

(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。

4. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。

【答案】不同意。因为为实函数,但可以为复函数。

5. 试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀

磁场,则电子分为两束。

6. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据

对波函数的统计解释,描写体系量子状态的波函数是概率波,由于

粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。

7. 解释量子力学中的“简并”和“简并度”。

【答案】一个能级对应多个相互独立的能量本征函数的现象称为“简并”;一个能级对应的本征函数的数目称为“简并度”。

8. 分别写出非简并态的一级、二级能量修正表达式。 【答案】

9. 现有三种能级【答案】

请分别指出他们对应的是哪些系统。

对应一维无限深势阱;

对应

对应中心库仑势系统,例如氢原子;

一维谐振子.

10.—个量子体系处于定态的条件是什么?

【答案】量子体系处于定态的条件是哈密顿算符不显含时间或能量取确定值。

二、计算题

11.力学量在自身表象中的矩阵表示有何特点?

【答案】力学量在自身表象中的矩阵是对角的,对角线上为的本征值。

12.粒子在二维无限深势阱中运动

,(1)写出本征能量和本征波函数; (2)若粒子受到微扰

的作用,求基态和第一激发态能级的一级修正。

【答案】 (1)根据题意,易写出粒子在二维无限深势阱中本征能量和波函数。

(2)基态的一级能量修正

在计算第一激发态能级的一级修正时,由于存在两组简并态利用简并下能级的修正方法计算. 令

则可计算出微扰

的矩阵表达式

所以

所以微扰可表示成

得:

13.粒子在一维无限深势阱中运动. 设该体系受到的微扰作用。(1)利用微扰理论求第n 能级的准至二级的近似表达式. (2)指出所得结果的适用条件. 【答案】(1) 一维无限深方势阱:

体系的零级近似波函数和零级近似能量

求到二级,矩阵元一般形式

则第n 能级的二级近似能量