2017年西南财经大学统计学(数理统计+经济统计)复试仿真模拟三套题
● 摘要
一、简答题
1. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于AT 来说很小时,二项分布仍然适用。
但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。
(2)若X 服从二项分布若Y 服从超几何分布则则
2. 解释多重判定系数和调整的多重判定系数的含义和作用。
【答案】(1)多重判定系数是多元回归中的回归平方和占总平方和的比例,它是度量多元回归方程拟合程度的一个统计量,反映了在因变量y 的变差中被估计的回归方程所解释的比例,其计算公式为
(2)调整的多重判定系数考虑了样本量(n )和模型中自变量的个数(k )的影响,这就使得
的值永远小于
而且的值不会由于模型中自变量个数的增加而越来越接近1,
其计算公式为
3. 简述相关系数和函数关系的差别。
【答案】变量之间的关系可分为两种类型:函数关系和相关关系。
(1)函数关系 设有两个变量
和(2)相关关系
相关关系是指变量之间确实存在的但关系值不固定的相互依存关系。在这种关系中,当一个(或几个)变量的值确定以后,另一个变量的值虽与它(或它们)有关,但却不能完全确定。这是一种非确定的关系。
4. 简述时间序列的预测程序。
【答案】在对时间序列进行预测时,通常包括以下几个步骤:
第 2 页,共 24 页 变量随变量一起变化,并完全依赖于当变量取某个数值时,依确定的关系取相应的值,则称是的函数。由此可见函数关系是一种一一对应的确定性关系。
(1)确定时间序列所包含的成分,也就是确定时间序列的类型;
(2)找出适合此类时间序列的预测方法;
(3)对可能的预测方法进行评估,以确定最佳预测方案;
(4)利用最佳预测方案进行预测。
5. 在显著性检验过程中,经常遇到值这一概念,试回答以下问题:
(1)值能告诉我们什么信息?
(2)当相应的值较小时为什么要拒绝原假设?
(3)显著性水平与值有何区别?
【答案】如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率,称为值,也称为观察到的显著性水平。
(1)值是当原假设正确时,得到所观测的数据的概率。如果原假设是正确的话,值告诉我们这样的观测数据会有多么的不可能得到。相当不可能得到的数据,就是原假设不对的合理证据。
(2)值是反映实际观测到的数据与原假设明实际观测到的数据与之间不一致程度的一个概率值。值越小,说之间不一致的程度就越大,检验的结果也就越显著。
(3)是犯第I 类错误的上限控制值,它只能提供检验结论可靠性的一个大致范围,而对于一个特定的假设检验问题,却无法给出观测数据与原假设之间不一致程度的精确度量。也就是说,仅从显著性水平来比较,
如果选择的值相同,
所有检验结论的可靠性都一样。而值可以测量出样本观测数据与原假设中假设的值的偏离程度。
6. 利用增长率分析时间序列时应注意哪些问题?
【答案】在应用増长率分析实际问题时,应注意以下几点:
(1)当时间序列中的观察值出现0或负数时,不宜计算增长率。这是因为对这样的序列计算增长率,要么不符合数学公理,要么无法解释其实际意义;
(2)在有些情况下,不能单纯就增长率论増长率,要注意增长率与绝对水平的结合分析。
二、计算题
7. 某电视机厂对三个元件生产厂提供的电子元件的三种性能进行质量检验。他们想知道元件生产厂家同元件性能的质量差异是否有关系。抽查了 450只元件次品,整理成为如表1所示的联表。
表1 3×3列联表 列
第 3 页,共 24 页
根据抽查检验的数据,他们认为次品类型与厂家(即哪一个厂)生产是无关的。 要求:
(1)试以的显著性水平进行检验,作出判断。
次品类型与厂家生产是独立的,
表2 各组的频数理论值计算表
次品类型与厂家生产不是(2)计算c 系数和V 系数。 【答案】(1)建立假设:独立的。计算得各组的频数理论值,如表2所示。
表中各项的理论频数计算方法为:
即的计算值
为自由度等
于
第 4 页,共 24 页
查分布表得