当前位置:问答库>考研试题

2017年西北民族大学统计学(同等学力加试)复试实战预测五套卷

  摘要

一、简答题

1. 下列调查问卷中的提问都有问题,请修改。

(1)您和您爱人是否对现有住房满意?

(2)您最近一次是几点上班的?

(3)绝大多数喝过明光牛奶的人都认为它口味纯正,您认为是这样的吗?

【答案】(1)您对现有住房满意吗?您爱人呢?

(2)您最近一次的工作是几点上班?

(3)您认为明光牛奶的口味纯正吗?

2. 在研宄方法上,参数估计与假设检验有什么相同点和不同点?

【答案】(1)参数估计和假设检验的相同点

①是根据样本信息推断总体参数;

②都以抽样分布为理论依据,建立在概率论基础之上的推断,推断结果都有风险;

③对同一问题的参数进行推断,使用同一样本、同一统计量、同一分布,因而二者可以相互转换。

(2)参数估计和假设检验的不同点

①参数估计是以样本资料估计总体参数的可能范围,假设检验是以样本资料检验对总体参数的先验假设是否成立;

②区间估计求得的是以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;

③区间估计立足于大概率,通常以较大的把握程度(可信度)

成立。

3. 简述指数平滑法的基本含义。

【答案】指数平滑法是对过去的观察值加权平均进行预测的一种方法,该方法使得第

形式,观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑。

使用指数平滑法时,关键的问题是确定一个合适的平滑系数因为不同的会对预测结果产生

不同的影响。当

大的权数;同样时,预测值仅仅是重复上一期的预测结果;

当时,预测值就是上一期实际

越接近1,模型对时间序列变化的反应就越及时,因为它对当前的实际值赋予了比预测值更越接近0, 意味着对当前的预测值赋予更大的权数,因此模型对时间序列变化的

第 2 页,共 44 页 去估计总体参数的置信区间;假设检验立足于小概率,

通常是给定很小的显著性水平去检验对总体参数的先验假设是否期的预测值等于

期的实际观察值与第期预测值的加权平均值。指数平滑法是加权平均的一种特殊

反应就越慢。一般而言,当时间序列有较大的随机波动时,

宜选较大的以便能很快跟上近期的变化,当时间序列比较平稳时,宜选较小的但实际应用时,还应考虑预测误差,这里仍用误差均方来衡量预测误差的大小,确定时,可选择几个进行预测,然后找出预测误差最小的作为最后的值。

4. 解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的关系。

【答案】(1)总平方和(S^T)是实际观测值

与其均值的离差平方和,即

(2)回归平方和(^狀)是各回归值

来解释的变差部分。

(3)残差平方和(SSE )是各实际观测值与回归值的离差平方和,即

称为误差平方和。

(4)三者之间的关系

5. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?

【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于AT 来说很小时,二项分布仍然适用。

但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。

(2)若X 服从二项分布若Y 服从超几何分布

6. 统计分组标志选择的原则。

【答案】在进行统计分组标志选择时要遵循三个原则:

(1)应根据研宄目的与任务选择分组标志。同一研宄总体,研宄的目的不同,可选用的分组标志也不同。

(2)要选用能反映事物本质或主要特征的标志。一般情况下,社会经济现象有多种特征,在选择分组标志 时,可以使用这种标志,也可以选择另一种标志,这就需要根据被研究对象的特征,选择主要的、能抓住事物本 质的标志进行分组。

(3)要根据现象所处的历史条件及经济条件来选择标志。由于社会是不断发展的,在不同的历史条件与经 济条件下,选择的分组标志也不一样,要根据情况的变化而变化。

第 3 页,共 44 页 与实际观测值的均值y 的离差平方和,即其反映了在y 的总变差中由于x 与y 之间的线性关系引起的y 的变化部分,它是可以由回归直线它是除了的线性影响之外的其他因素对变差的作用,是不能由回归直线来解释的变差部分。其又则则

二、计算题

7. 设总体的密度函数为:为其子样。

1)求参数的极大似然估计量。

2)证明子样平均及都是的无偏估计量,问哪个较有效?

【答案】(1)求解未知参数的极大似然估计量,

可按如下步骤进行:

①写出似然函数。

②由总体的密度函数的表达式可知,

所以参

数的极大似然估计量

由总体的分布对称可得

所以,子样平均及

都是的无偏估计量。

由此可知两者的有效性大小取决于n 的取值大小,即子样的个数。 当时,有此时第 4 页,共 44 页 时

,取到最大值1,解得

, (2

比子样平均较有效。