2017年武汉大学物理科学与技术学院880材料科学基础[专业学位]考研冲刺密押题
● 摘要
目录
2017年武汉大学物理科学与技术学院880材料科学基础[专业学位]考研冲刺密押题(一) .... 2
2017年武汉大学物理科学与技术学院880材料科学基础[专业学位]考研冲刺密押题(二) .... 6
2017年武汉大学物理科学与技术学院880材料科学基础[专业学位]考研冲刺密押题(三) .. 10
2017年武汉大学物理科学与技术学院880材料科学基础[专业学位]考研冲刺密押题(四) .. 13
2017年武汉大学物理科学与技术学院880材料科学基础[专业学位]考研冲刺密押题(五) .. 17
一、名词解释
1. 空间点阵
【答案】为了便于分析研宄晶体中质点的排列规律性,可将实际晶体结构看成完整无缺的理想晶体并简化,将其中每个质点抽象为规则排列于空间的几何质点,称之为阵点。这些阵点在空间呈周期性规则排列并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵。
2. 配位数
【答案】配位数是指晶体结构中任一原子周围最邻近且等距离的原子数目。
3. 位错
【答案】位错是指晶体中的一维缺陷或线状缺陷。
4. 非稳态扩散
【答案】非稳态扩散是指在扩散过程中任何一点的浓度都随时间不同而变化的扩散。
5. 共价健
【答案】共价健是指由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键,具有饱和性和方向性。
二、简答题
6. 马氏体相变时的自由焓-成分曲线如图所示。
图 马氏体相变时的自由焓-成分曲线
(1)使用自由焓-成分曲线来说明马氏体转变在
(2)说明在温度下这一化学驱动力是如何估算的。
成分为x 的合金的M 相的自由焓曲线在Y 相的上面,因而这个温度和成时的驱动力。 (3)解释为什么在Ms 温度时的马氏体形核驱动力与Fe-C 合金中的碳浓度无关。 【答案】(1)在
在分下奥氏体是稳定的,不可能发生马氏体相变。
温度,成分为x 合金的M 相的自由焓曲线与Y 相的相交,即这个温度下,该成分的马氏体和奥氏体的自由焓相等,因而马氏体相变不具有驱动力。
在T=Ms时,成分为x 的合金的M 相的自由焓曲线在Y 相的下面,所以在热力学上奥氏体不稳定,
Ms 温度的意义是具有足以使马氏体转变发生的驱动力马氏体相变驱动力正比与AB 线段的长度。
的最高温度。
在温度,尽管M 相的自由焓曲线在Y 相的下面,有一定的相变驱动力,但由于马氏体相变会产生很高的应变能,造成很大的相变阻力,这时的驱动力不能克服该相变阻力,马氏体相变仍不能发生。
(2)引起马氏体相变的驱动力可以根据以下公式估算:
该式表明,马氏体相变的驱动力正比于过冷度(TO —Ms ),
的温度,Ms 是开始形成马氏体的温度。
(3)在Fe-C 系中,和Ms 都随碳含量的增加而下降,降低速度相等并且是线性的。因而对不同碳含量的合金,其保持不变,也就是说驱动力保持不变,所以与碳含量无关。
7. 纯金属中溶入另一组元后(假设不会产生新相)会带来哪些微观结构上的变化?这些变化如何引起性能上的变化?
【答案】(1)微观结构上的变化:
①引起点阵畸变,点阵常数会改变;
②会产生局部偏聚或有序,甚至出现超结构。
是奥氏体和马氏体具有相同自由焓
(2)性能上的变化:
①因固溶强化使强度提高,塑性降低;
②电阻一般増大。
8. 请在立方晶胞中画出
【答案】和(111)以及[111]和[201]的图示,并说明其意义。 和(111)表示晶面,[111]和[201]表示晶向,如图所示。
图
9. 铜是工业上常用的一种金属材料,具有电导率高和耐腐蚀性好等优点,但是纯铜的强度较低,经常难以满足要求,根据你所学的知识,提出几种强化铜合金的方法,并说明其强化机理。
【答案】强化铜合金的方法及其强化机理如下:
(1)加工硬化,指金属晶体在塑性变形过程中,材料的强度随着塑性形变量的增加而増加。加工硬化产生的主要机制有位错塞积、林位错阻力和形成割阶时产生对位错运动的阻力及产生割阶消耗外力所做的功,宏观表现出金属强度提高。
(2)固溶强化,是金属中由于溶质原子的存在,使得其强度提高。固溶强化的根本原因在于溶质原子与位错的交互作用,使得其阻碍位错运动。这种交互作用又分为溶质沿位错聚集并钉扎位错的弹性交互作用和化学交互作用两类。
(3)分散强化,依靠弥散分布与金属基体中的细小第二相强化金属。其强化的原因在于细小的第二相粒子与位错的交互作用,主要有位错绕过颗粒的奥罗万机制以及位错切过颗粒机制。
(4)细晶强化,依据霍尔-佩奇公式,由于晶界数量直接取决于晶粒的大小,因此,晶界对多晶体起始塑变抗力的影响可通过晶粒大小直接体现。多晶体的强度随其晶粒细化而提高。 这些强化方式的共同点即为金属强化的实质,在于增加了位错运动的阻力。
10.试说明在正温度梯度下为什么固溶体合金凝固时可以呈树枝状方式成长,而纯金属则得不到树枝状晶。
【答案】由于溶质原子再分配造成成分过冷,使固溶体合金正温度梯度下凝固时也可以呈树枝状方式成长;而纯金属则需要在负温度梯度下才能得到树枝状晶。