当前位置:问答库>考研试题

2018年西北大学经济管理学院806西方经济学与应用统计学之统计学考研仿真模拟五套题

  摘要

一、简答题

1. 正态分布所描述的随机现象有什么特点?为什么许多随机现象服从或近似服从正态分布?

【答案】(1)正态分布所描述的随机现象具有如下特点: ①正态曲线的图形是关于的对称钟形曲线,且峰值在处;

②正态分布的两个参数均值和标准差一旦确定,正态分布的具体形式也就唯一确定,不同参数取值的 正态分布构成一个完整的“正态分布族”。

③正态分布的均值可以是实数轴上的任意数值,它决定正态曲线的具体位置,标准差相同而均值不同 的正态曲线在坐标轴上体现为水平位移。 ④正态分布的标准差

⑤当为大于零的实数,它决定正态曲线的“陡_”或“扁平”程度。越大,正态曲线 越扁平;越小,正态曲线越陡峭。 的取值向横轴左右两个方向无限延伸时,正态曲线的左右两个尾端也无限渐近横轴,但理论上永远不会与之相父。

⑥与其他连续型随机变量相同,正态随机变量在特定区间上的取值概率由正态曲线下的面积给出,而且其曲线下的总面积等于1。

(2)如果原有总体是正态分布,那么,无论样本量的大小,样本均值的抽样分布都服从正态分布。若原有 总体的分布是非正态分布,随着样本量的增大(通常要求

方差为总体方差的),不论原来的总体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值这就是统计上著名的中心极限定理。因此许多随机现象服从或近似服从正态分布。

2. 说明计算统计量的步骤。

【答案】计算统计量的步骤:

(1)用观察值减去期望值

(2)将

(3)将平方结果之差平方; 除以

(4)将步骤(3)的结果加总,即得:

3. 解释总体分布、样本分布和抽样分布的含义。

【答案】总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。假设X 为总体随机变量,那么总体分布就是指X 的分布。很显然,同一变量不同的总体或同一总体不同的变量,其分布是不同的。

样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。假设x 为总体随机变量X 在样本 中的体现,那么样本分布就是指x 的分布,或者说是关于《个观测值的分布。同样,同一变量不同的样本或同一 样本不同的变量,其分布是不同的。

一般意义上说,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率组 成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计量的分布,而样本统计量是由样 本观测值计算而来的。具体地说,抽样分布就是从容量为W 的总体中抽取容量为n 的样本时,所有可能的样本 统计量所形成的分布。假设从容量为W 的有限总体中最多可以抽取m 个容量为n 的不同样本,那么把所有m 个样本统计值形成频率分布,就是抽样分布。可以说,抽样分布是研宄样本分布与总体分布之间的桥梁。

4. 回归分析中的误差序列有何基本假定?模型参数的最小二乘估计具有哪些统计特性?若模型用于预测,影响预测精度的因素有哪些?

【答案】(1

)误差项是一个服从正态分布的随机变量,且独立,即

为0的随机变量,即线性函数;②无偏性

具有最小方差的估计量。

(3)影响预测精度的因素有:①预测的信度要求。同样情况下,要求预测的把握度越高,贝_应的预测区间就越宽,精度越低;②总体y 分布的离散程度越大,相应的预测区间就越宽,预测精度越低;③样本观测点的多少n 。n 越大,相应的预测区间就越窄,预测精度越高;④样本观测点中,解释变量x 分布的离散度。x 分布越离散,预测精度越高;⑤预测点离样本分布中心的距离。预测点越远离样本分布中心预测区间越宽,精度越低,越接近样本分布中心区间越窄,精度越高。

5. 简述复合型时间序列的预测步骤。

【答案】复合型序列是指含有趋势性、季节性、周期性和随机成分的序列。对这类序列预测方法通常是将时间序列的各个因素依次分解出来,然后再进行预测,分解法预测通常按下面的步骤进行:

(1)确定并分离季节成分。计算季节指数,以确定时间序列中的季节成分。然后将季节成分

)。独立性意味着对于一个特定的值,它所对应的与其他值所对应的不相关。误差项是一个期望值对于所有的值分别是的方差都相同。 为随机变量的是所有线性无偏估计量中(2

)模型参数的最小二乘估计的统计特性:①线性,即估计量的无偏估计;③有效性

从时间序列中分离出去,即用每一个时间序列观测值除以相应的季节指数,以消除季节性;

(2)建立预测模型并进行预测。对消除了季节成分的时间序列建立适当的预测模型,并根据这一模型进行预测;

(3)计算出最后的预测值。用预测值乘以相应的季节指数,得到最终的预测值。

6. 在什么条件下用正态分布近似计算二项分布的概率效果比较好?

【答案】当样本量n 越来越大时,二项分布越来越近似服从正态分布。这时,二项随机变量的直方图的形状接近正态分布的图形形状。即使对于小样本,当

然相当好,此时随机变量X 的分布是相对于其平均值时,二项分布的正态近似仍

和都对称的。当p 趋于0或1时,二项分布将呈现出偏态,但当n 变大时,这种偏斜就会消失。一般来说, 只要当n 大到使大于或等于5时,近似的效果就相当好。

7. 什么叫变异、变量和变量值,试举例说明。

【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、女;年龄标志表现为20岁、30岁等。

变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:

(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;

“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、

“次品”等;

(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……

8. 概述相关分析与回归分析的联系与区别。

【答案】(1)相关分析和回归分析的联系

它们具有共同的研宄对象,都是对变量间相关关系的分析,二者可以相互补充。相关分析可以表明变量间相关关系的性质和程度,只有当变量间存在相当程度的相关关系时,进行回归分析去寻求变量间相关的具体数学形式才有实际的意义。同时,在进行相关分析时,如果要具体确定变量间相关的具体数学形式,又要依赖于回归分析,而且在多个变量的相关分析中相关系数的确定也是建立在回归分析基础上的。

(2)相关分析和回归分析的区别

①从研究目的上看,相关分析是用一定的数量指标(相关系数)度量变量间相互联系的方向和程度;回归分析却是要寻求变量间联系的具体数学形式,是要根据自变量的固定值去估计和预测因变量的平均值。