当前位置:问答库>考研试题

2017年西北工业大学理学院826量子力学之量子力学教程考研题库

  摘要

一、简答题

1. 什么样的状态是定态,其性质是什么?

【答案】定态是能量取确定值的状态,其性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变

2. 厄米算符的本征值与本征矢

分别具有什么性质?

【答案】本征值为实数,本征矢为正交、归一和完备的函数系。

3. 能级的简并度指的是什么?

【答案】能级简并度是指对应于同一能量本征值的线性无关的本征态个数。

4. 简述波函数的统计解释。

【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

5. 波函数是用来描述什么的?它应该满足什么样的自然条件?的物理含义是什么?

【答案】波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。表示在时刻附近体积元中粒子出现的几率密度。

6. 量子力学中的可观测量算符为什么应为厄米算符?

【答案】实验上可以观测的力学量的平均值必须为实数,而体系在任何量子态下平均值为实数的算符必为厄米算符,因此这要求可观测量算符应为厄米算符。

7. 电子在位置和自旋表象下,波函数【答案】

利用

的几率密度;

8. 写出在【答案】

9. 写出测不准关系,并简要说明其物理含义。 【答案】测不准关系

物理含义:若两个力学量不对易,则它们不可能同

第 2 页,共 49 页

如何归一化?解释各项的几率意义。

进行归一化,其中

表示粒子在

|

表示粒子在处的几率密度。

表象中的泡利矩阵。

时有确定的测值。

10.非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。

【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。

(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。

(3)将体系的状态波函数

用算符的本征函数展开:

则在

盔中测量力学量得到结果为

(4)体系的状态波函数满足薛定谔方程

其中是体系的哈密顿算符。

的几率是

得到结果在

范围内的几率是

得出。表示力学量的算符组成完全系的本征函

(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。

二、证明题

11.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

(2)证:因为而(3)因为

所以

即正交

所以

即为厄米算符。

第 3 页,共 49 页

【答案】(1)证:对于厄米算符

所以

即本征值为实

具有周期性,

设本征方程为

其中为本征值,上式可改写为

易解出

C 为积分常数,可由归一化条

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

12.设力学量A 不显含时间t ,证明在束缚定态下,【答案】设束缚定态为

即有:

因A 不显含时间t , 所以

因而有:

即角动量z 分量的本征值为

是量子化的,相应本征函

再利用归一化条件可得

三、计算题

13.假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场B 沿z 轴正向,电子磁矩在均匀磁场中的势能:

表示;

(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:电子轨道运动,

此时T=0。

求t >0时,自旋的平均值。提示:

提示:忽略

这里

为电子的磁矩;

自旋用泡利矩阵

(2)假设t=0时,电子自旋指向x 轴正向,即

第 4 页,共 49 页