2017年上海海事大学科学研究院809运筹学考研冲刺密押题
● 摘要
一、选择题
1. 若f 是G 的一个流,K 为G 的一个割,且f 的流量等于K 的容量,则K 一定是( )。
A. 最大流
B. 最大割
C. 最小流
D. 最小割
【答案】D
【解析】网络从发点到收点的各通路中,由容量决定其通过能力,最小割集则是这些路中的咽喉部分,或者叫瓶口, 其容量最小,它决定了整个网络的最大通过能力。
2. 对于动态规划,下列说法正确的有( )
A. 在动态规划模型中,问题的阶段数等于问题中的子问题的数目
B. 动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性
C. 对一个动态规划问题,应用顺推成逆推解法可能会得出不同的最优解
D. 假如一个线性规划问题含有8个变量和6个约束,则用动态规划方法求解时将划分为6个阶段,每个阶 段的状态将有一个8维的向量组成
【答案】AB
【解析】对于一个动态规划问题,不论是采用顺推法还是逆推法,只能得到一个唯一的解; 假如一个线性规 划问题含有8个变量和6个约束,则用动态规划方法求解时将按照变量的个数划分为8个阶段,每个阶段的状态 将有一个6维的向量组成。
3. 设线性规划
A. 基本可行解
B. 基本可行最优解
C. 最优解
D. 基本解
第 2 页,共 82 页 有可行解,则此线性规划一定有( )。
【答案】A
【解析】可行解包括基可行解与非基可行解。
4. 动态规划是解决( )的一种数学方法。
A. 单阶段决策过程最优化
B. 多目标决策过程最优化
C. 多阶段决策过程最优化
D. 位目标决策过程最优化
【答案】C
【解析】动态规则是运筹学的一个分支,它是解决多阶段决策过程最优化的一种数学方法
二、填空题
5. 无向连通图G 是欧拉图的充要条件是_____。
【答案】G 中无奇点
6. 对于线性规划问题:MaxZ=CX.AX≦b.X ≧0,若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量, 且为该LP 的一个可行基,则对应于基B 的基可行解为:_____,该基可行解为最优解的条件是:_____。 【答案】,对于一切有。
【解析】若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量,
此时令非基变量
, 这时变量的个数等于线性方程组的个数,用高斯消去法,可求得对应
于基B 的基可行解
为。由最优解的判别定理,若对于一
切
, 则所求得的基可 行解为最优解。
7. 对于同一风险决策问题,与用期望收益最大准则得到相同结果的决策准则是:_____。
【答案】期望损失最小准则
【解析】对于同一风险决策问题,用期望收益最大准则和期望损失最小准则获得的决策方案相同。
8. 某整数规划模型,解其松弛问题得到最优解。若其中某分量x j 二场为非整数,用分支定界法求解时,针对 该分量构造的两个约束条件应为:_____。 【答案】
【解析】由分支定界法的原理可以,良容易得至“结果,其中〔b j 〕为不大于bj 的最大整数。
三、判断题
第 3 页,共 82 页
9. 网络图中任何一个结点都表示前一工序的结束和后一工序的开始。( )
【答案】×
【解析】网络图的起始点只表示一工序的开始,结束点只表示一工序的结束。
10.利用破圈法求赋权图的最小支撑树时,每次都是任取一个圈并去掉其中权最小的边,直到该赋权图不再 含圈时,便得到最小支撑树。( )
【答案】×
【解析】利用破圈法求最小支撑树时,每次任取一个圈,去掉圈中权最大的边。
11.假如到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布。( )
【答案】√
,为时间[0,t]内到达系统的顾客数,则{N(t ),t ≥0}为参数λ的普阿松流【解析】设N (t )
的充要条件是: 相继到达时间间隔服从相互独立的参数为λ的负指数分布。
12.若X 1, X 2分别是某一线性规划问题的最优解,则也是该线性规划问题的最优解,其中λ1, λ2为正实数。( )
【答案】×
【解析】λ1, λ2不但应该是正实数,还应该满足λ1﹢λ2=1。
13.运输问题是一种特殊的线性规划模型,因而其求解结果也可能出现四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。( )
【答案】×
【解析】运输问题是一种特殊的线性规划模型,它总存在可行解,或是存在惟一最优解,或是有无穷最优解。
四、证明题
14.车间内有m 台机器,有c 个修理工(m>c),每台机器发生故障率为兄,符合M/M/c/m/m模型, 试证:
【答案】由题设知
一个周期T c 等于发生故障的机器在系统中的逗留时间W s 加上机连续正常工作时间
为 服务台繁忙的概率。服务台繁忙的概率也为
第 4 页,共 82 页 并说明上式左右两端的概率意义。 ,
则,所以。