2018年中国人民大学统计学院432统计学[专业学位]之统计学考研强化五套模拟题
● 摘要
目录
2018年中国人民大学统计学院432统计学[专业学位]之统计学考研强化五套模拟题(一) .... 2
2018年中国人民大学统计学院432统计学[专业学位]之统计学考研强化五套模拟题(二) .. 14
2018年中国人民大学统计学院432统计学[专业学位]之统计学考研强化五套模拟题(三) .. 26
2018年中国人民大学统计学院432统计学[专业学位]之统计学考研强化五套模拟题(四) .. 39
2018年中国人民大学统计学院432统计学[专业学位]之统计学考研强化五套模拟题(五) .. 51
一、简答题
1. 什么叫变异、变量和变量值,试举例说明。
【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、女;年龄标志表现为20岁、30岁等。
变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:
(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;
“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、
“次品”等;
(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……
2. 简述假设检验的过程。
【答案】假设检验的过程如下:
(1)根据所研宄问题的要求提出原假设(或称为零假设、无效假设)和备择假设确定显著性水平。显著性水平为拒绝假设检验是犯第一类错误的概率。
(2)选择合适的检验方法,确定适当的检验统计量,确定统计量的分布,并由假设计算其数值。
(3)根据统计量确定值,做出统计推断。根据计算的统计量,查阅相应的统计表,确定
值,以值与显著性水平比较,若则拒绝接受
若则不拒绝
3. 简述古典概率法和经验概率法如何定义事件发生的概率。
【答案】概率的古典定义是,如果某一随机试验的结果有限,而且各个结果出现的可能性相等,则某一事件A 发生的概率为该事件所包含的基本事件数m 与样本空间中所包含的基本事件数n 的比值,记为:
经验概率又称主观概率,是指对一些无法重复的试验,只能根据以往的经验,人为确定这个
事件的概率。
4. 简述系数、c 系数、系数的各自特点。
【答案】(1)
相关系数是描述列联表数据相关程度最常用的一种相关系数。它的计算公式为:式中,《为列联表中的总频数,也即样本量。说系数适合
这个范围。
列联表的情况。C 系数的列联表,是因为对于
计算公式为:
列联表中的数据,计算出的系数可以控制在(2)列联相关系数又称列联系数,简称c 系数,主要用于大于
当列联表中的两个变量相互独立时,系数c=0, 但它不可能大于1。c 系数的特点是,其可能的最大值依赖于列联表的行数和列数,且随着R 和C 的增大而增大。
(3)克莱默提出了 V 系数。V 系数的计算公式为:
当两个变量相互独立时,当两个变量完全相关时,所以V 的取值在之间。如果列联表中有一维为2,即则V 值就等于值。
5. 什么是置信区间估计和预测区间估计?二者有何区别?
【答案】(1)置信区间估计,它是对x 的一个给定值_求出y 的平均值的估计区间,这一区间称为置信区间;预测区间估计,它是对x 的一个给定值求出y 的一个个别值的估计区间,这一区间称为预测区间。
(2)置信区间估计和预测区间估计的区别:置信区间估计是求y 的平均值的估计区间,而预测区间估计是求y 的一个个别值的估计区间;对同一个
区间要比置信区间宽一些。
6. 简述统计分组的原则。
【答案】采用组距分组时,需要遵循不重不漏的原则。不重是指一项数据只能分在其中的某一组,不能在其他组 中重复出现;不漏是指组别能够穷尽。即在所分的全部组别中每项数据都能分在其中的某一组,不能遗漏。
为解决不重的问题,统计分组时习惯上规定“上组限不在内”。即当相邻两组的上下限重叠时,恰好等于某 一组上限的变量值不算在本组内,而计算在下一组内。而对于连续变量,可以采取相邻两组组限重叠的方法,根 据“上组限不在内”的规定解决不重的问题,也可以对一个组的上限值采用小数点的形式,小数点的位数根据所 要求的精度具体确定。
这两个区间的宽度也是不一样的,预测
7. 说明回归模型的假设以及当这些假设不成立时的应对方法。
【答案】(1)多元回归模型的基本假定有: ①自变量
③对于自变
量
④误差项是一个服从正态分布的随机变量,且相互独立,即
(2)若模型中存在多重共线性时,解决的方法有:
第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。
若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性
,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。
若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。
8. 多元回归分析中为什么需要使用修正的判定系数(可决系数)来比较方程的拟合效果?是如何计算的?
【答案】在多元线性回归分析中,常用修正的判定系数,而不用多重判定系数来衡量估计模
型对样本观测值的拟合优度。这是由于多重判定系数
随着样本解释变量个数的增加
来越高(即的值越是解释变量个数的增函数)。也就是说,在样本容量不变的情况,在模型中增加新
不是一个合适的指标,需加以 是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方
差都相同,且不序列相关,
即
的所有
值②误差项s 是一个期望值为0的随机变量,即的解释变量不会改变总离差平方和,但可能增加回归平方和,减少残差平方和,从而可能改变模型的解释功能。因此在多元线性回归模型之间比较拟和优度时,
调整。而修正判定系数
归模型方面要优于多重判定系数修正判定系数的计算公式为
其值不会随着解释变量个数k 的増加而增加,因此在用于估计多元回