当前位置:问答库>考研试题

2018年烟台大学生命科学学院314数学(农)之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1. 设三阶方阵A 、B

满足式

的值.

其中E 为三阶单位矩阵.

求行列

【答案】

由矩阵

知则

. 可

逆.

所以

2. 已知A

矩阵,齐次方程组

的基础解系是

与由

的解.

有非零公共解,求a 的值并求公共解.

贝腕阵

的列向量(即矩阵

作初等行变换,有

又知齐

次方程组Bx=0

的基础解系是

(Ⅰ)求矩阵A ;

(Ⅱ

)如果齐次线性方程组

【答案】(1

)记

A

的行向量)是齐次线性方程组

得到

所以矩阵

的基础解系为

(Ⅱ)设齐次线性方程组Ajc=0与Sx=0

的非零公共解为由

线性表出,

故可设

于是

则既可由

线性表出,也可

对作初等行变换,有

不全为

其中t 为任意常数.

其矩阵A 各行元素之和均为0, 且满足

其中

当a=0时,

解出

因此,Ax=0与Bx=0

的公共解为

3.

已知三元二次型

(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值. 【答案】(Ⅰ)因为A 各行元素之和均为0,

即值

由征向量.

因为

的特征向量.

1的线性无关的特

,由此可知

是A 的特征

可知-1是A 的特征值

,不正交,将其正交化有

再单位化,可得

那么令

则有

(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,

4.

设三维列向量组线性无关,

列向量组线性无关.

和向量组

线性表示;

(Ⅰ

)证明存在非零列向量

(Ⅱ)

使得

可同时由向量组

时,

求出所有非零列向量

构成的向量组一定线性相关,故存在一组不即,

线性无关,故

不全为0

,

线性表示.

所有非零解,即可得所有非零

的系数矩阵A 施行初等行变换化为行最简形:

即存在非零列向量

不全为0.

使得

可同时由向量组

【答案】(Ⅰ)由于4

个三维列向量全为0

的数

又向量组记

和向量组向量

使得

线性无关;

向量组

(Ⅱ)易知,

求出齐次线性方程组下面将方程组

于是,方程组的基础解系可选为

_意非零常数.

因此,

所有非零列向量

所有非零解

_

t 为任

二、计算题

5. 写出下列二次型的矩阵:

(1

【答案】

⑴记

故f

的矩阵为

(2)与(1)相仿